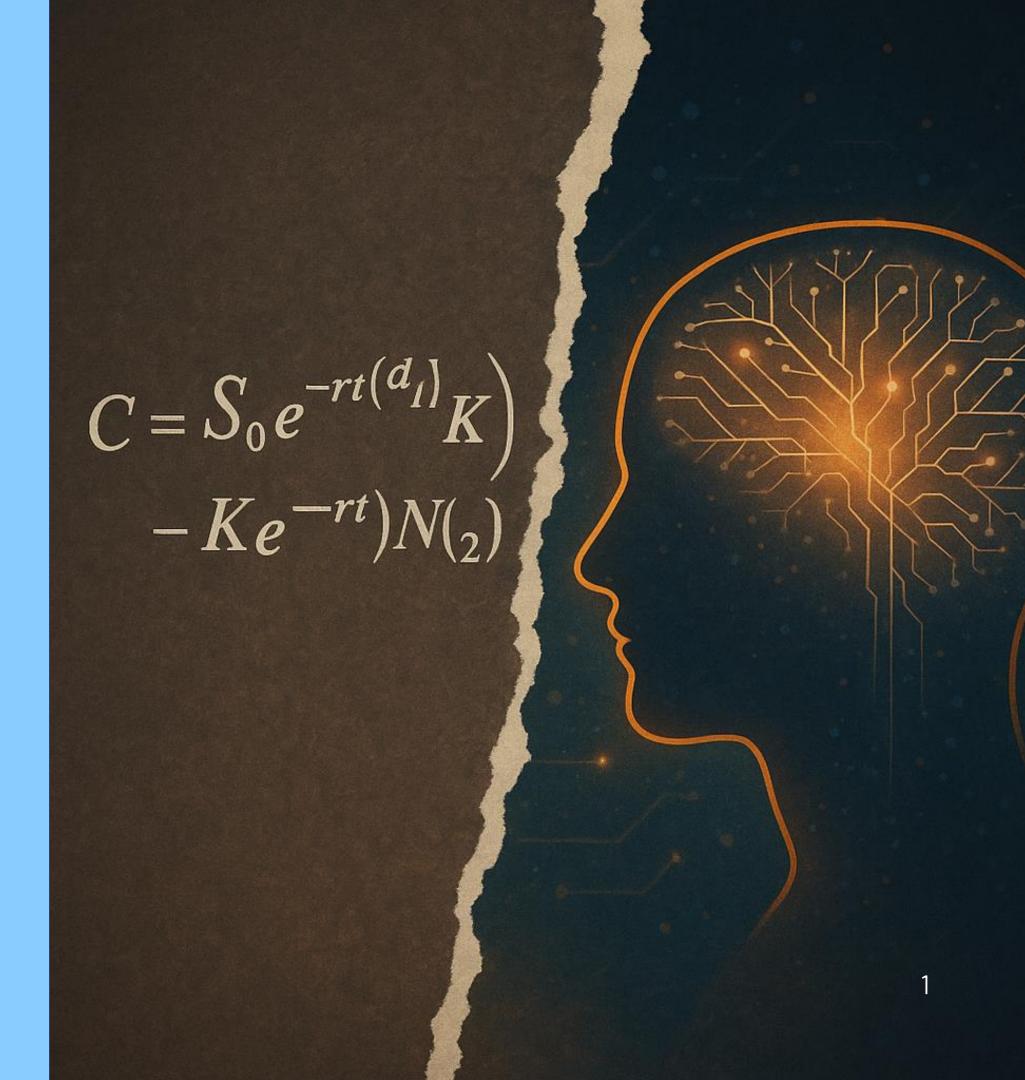
Deuxième Prix 2025 de la Fondation NATIXIS du Meilleur Mémoire de Master de Finance Quantitative

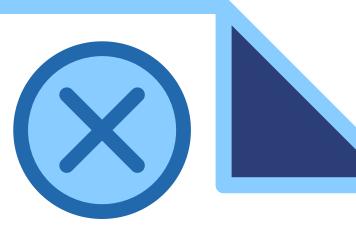
De l'équation qui a changé la finance... à celle qui apprend toute seule.

Présenté par Kettani Al Mamoune



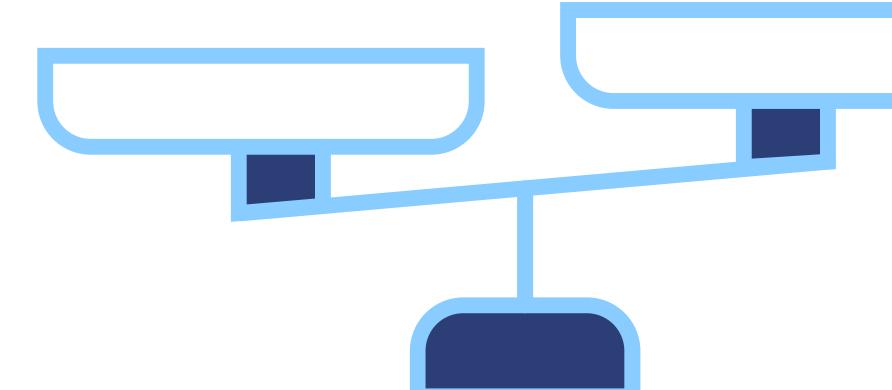
"Ceux qui apprennent du chaos survivent mieux, car ils adaptent leurs stratégies aux incertitudes du marché."

NASSIM NICHOLAS TALEB



- Volatilité constante
- Marchés rationnels
- Risques mesurables

- Marchés émotionnels
- Chocs, bulles, crises



Sommaire

- 1. Introduction
- 2. Les modèles traditionnels de valorisation
- 3. Le Machine Learning appliqué à la finance
- 4. Résultats et analyses comparatives
- 5. Vers une finance adaptative et résiliente

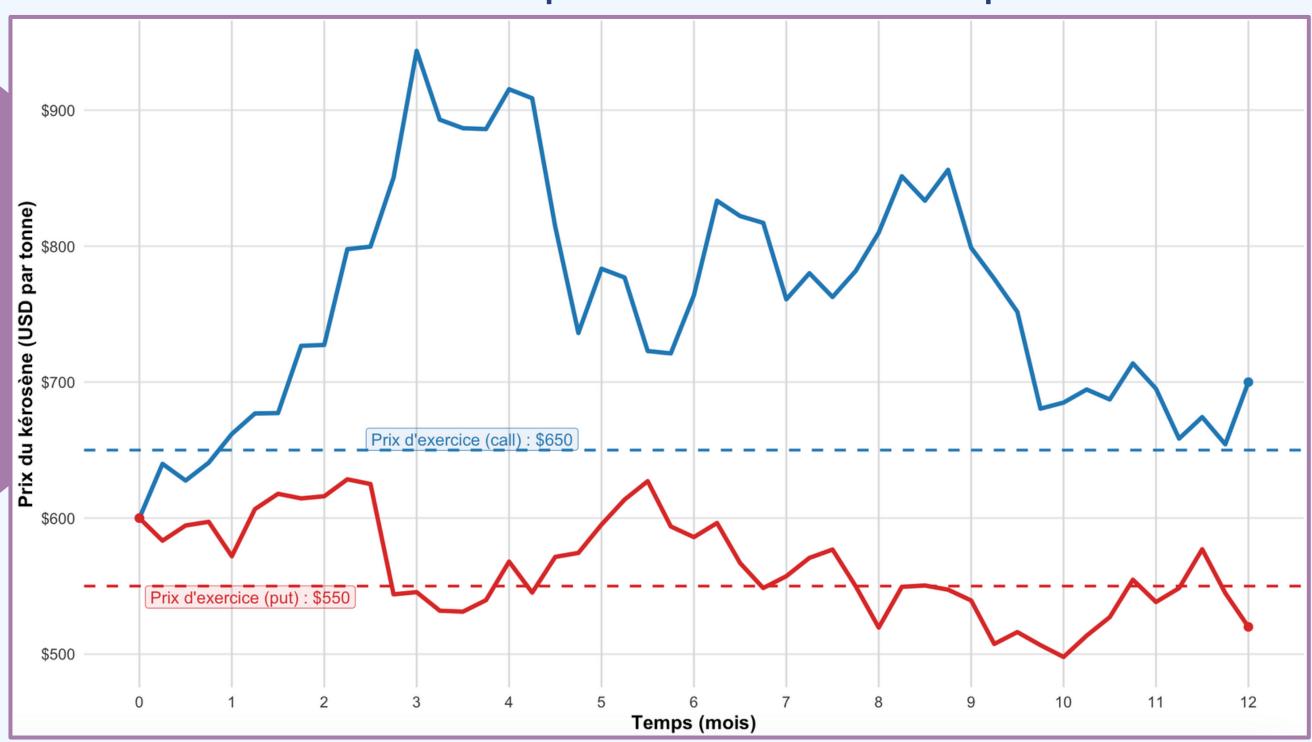
Quand le kérosène décide du destin d'une compagnie aérienne

Pourquoi les entreprises ont besoin de protection : le rôle des produits dérivés

- Contrat à terme (Forward / Future): engagement ferme à un prix fixé
- Option: droit sans obligation, la flexibilité face à l'incertitude

Simulation du prix du kérosène et niveaux d'options

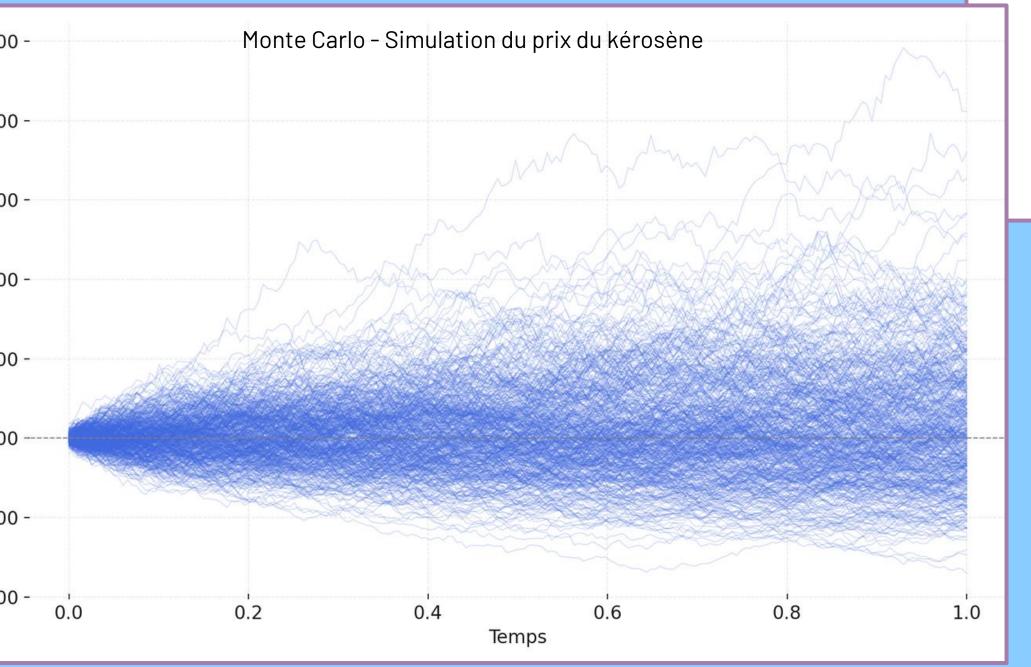
Les options: transformer l'incertitude en opportunité

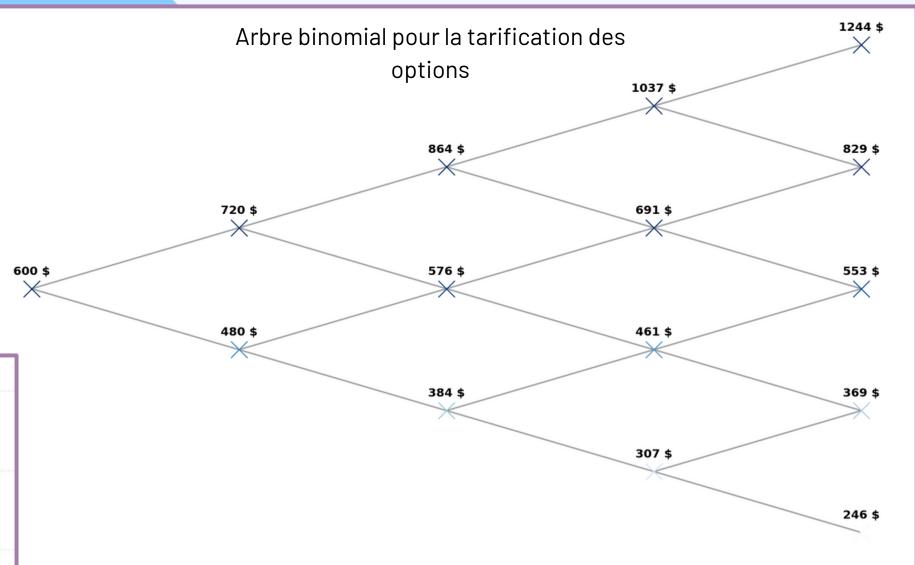


Comme une assurance, elle coûte une prime, et protège contre une hausse ou une baisse imprévisible des prix.

1 - Introduction

Comment savoir si une option est "justement" valorisée ?



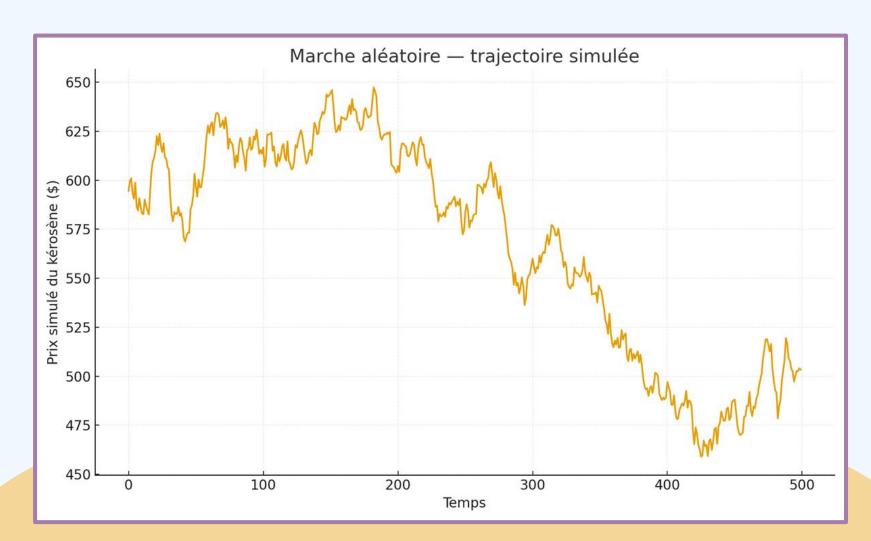


Les modèles classiques de valorisation des options

- Arbre Binomial
- Simulation de Monte-Carlo
- Black-Scholes Merton

Du hasard au modèle

Introduction au modèle de Black-Scholes

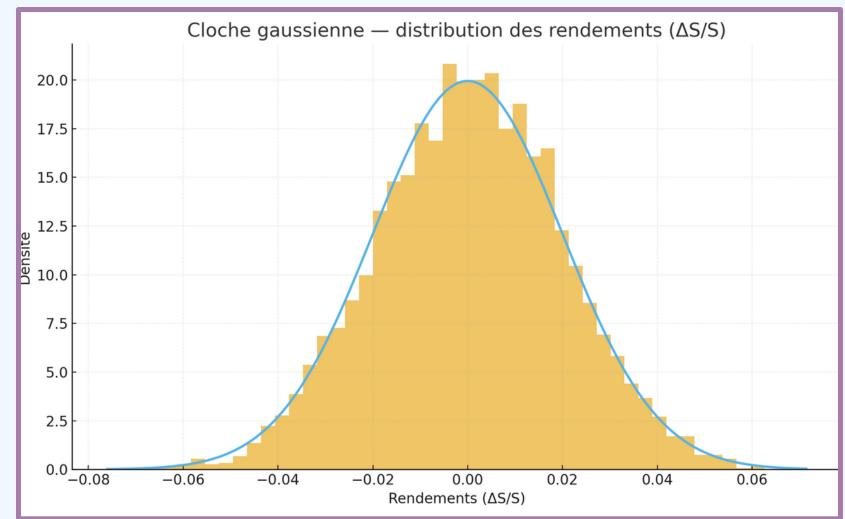


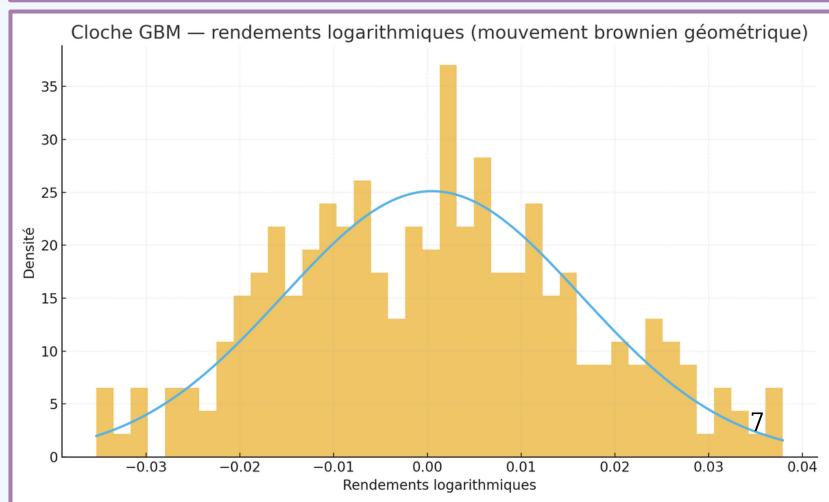
Mouvement brownien géométrique (GBM) - Modélisation continue du prix d'un actif financier

 $St = S0 \times exp((\mu - \frac{1}{2}\sigma^2)t + \sigma Wt)$

 S_t : prix au temps t μ : rendement σ : volatilité S_0 : prix initial W_t : aléa brownien

2 - Les modèles traditionnels de valorisation





Le modèle de Black-Scholes (1973) Valorisation théorique d'une option européenne

$$C=N(d_1)S_t-N(d_2)Ke^{-rt}$$
 where $d_1=rac{\lnrac{S_t}{K}+(r+rac{\sigma^2}{2})t}{\sigma\sqrt{t}}$ and $d_2=d_1-\sigma\sqrt{t}$

- C: Prix théorique de l'option Call
- St: Prix actuel du sous-jacent
- **K**: Prix d'exercice (strike)
- **r**: Taux sans risque
- t : Temps restant avant l'échéance
- σ : Volatilité du sous-jacent
- **N(d1),N(d2)**: Fonctions de répartition de la loi normale (probabilités cumulées)

Le modèle de Black-Scholes

De l'intuition au Nobel.

Stratégie de couverture delta-neutre Portefeuille à risque nul ($\Delta = 0$)

Les modèles post-Black-Scholes : quand la réalité s'invite dans les équations

Heston et Merton: rendre les modèles plus vivants

 Modèle de Heston (1993) 	• Modèle de Merton (1976)
Volatilité stochastique	• Sauts de prix
 Reproduit le "smile" de volatilité observé sur les marchés. 	 Capture les chocs et annonces
 Plus réaliste, mais difficile à calibrer (plus de paramètres). 	 Reflète mieux les crises, mais plus lourd à estimer.

Le Machine Learning La sagesse de la foule appliquée à la finance

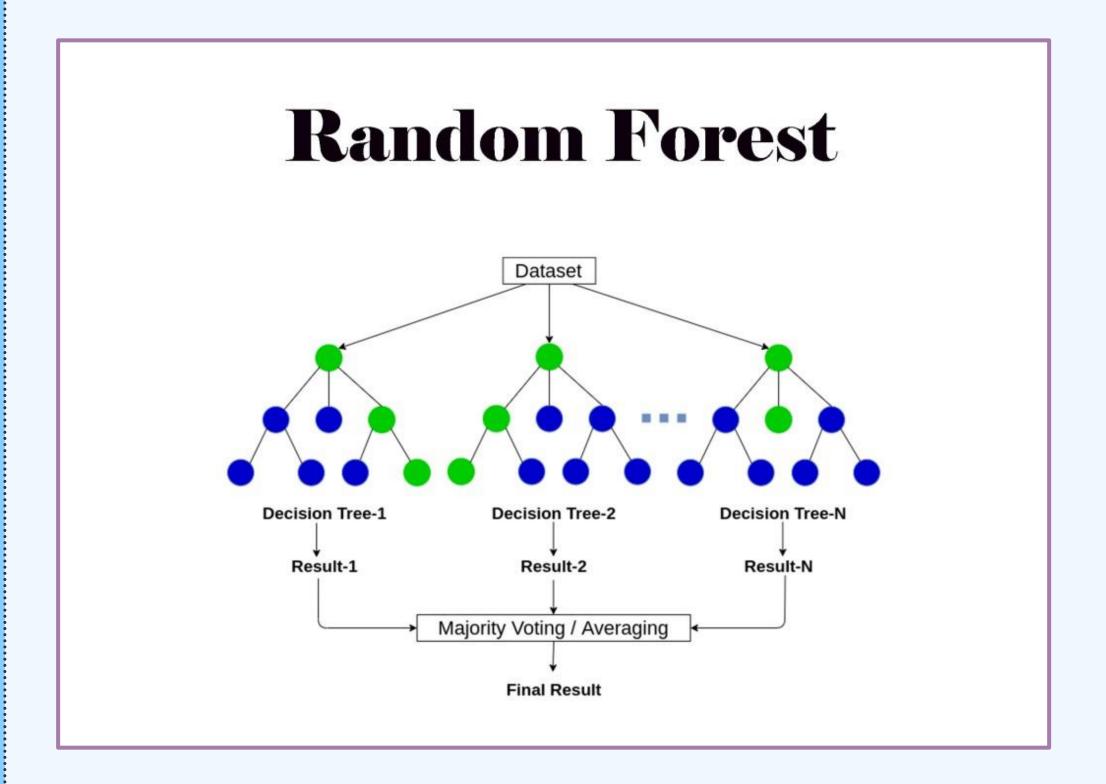
Seul, on devine. Ensemble, on apprend.

Conditions du succès :

- performance > 50 %
- diversité entre modèles

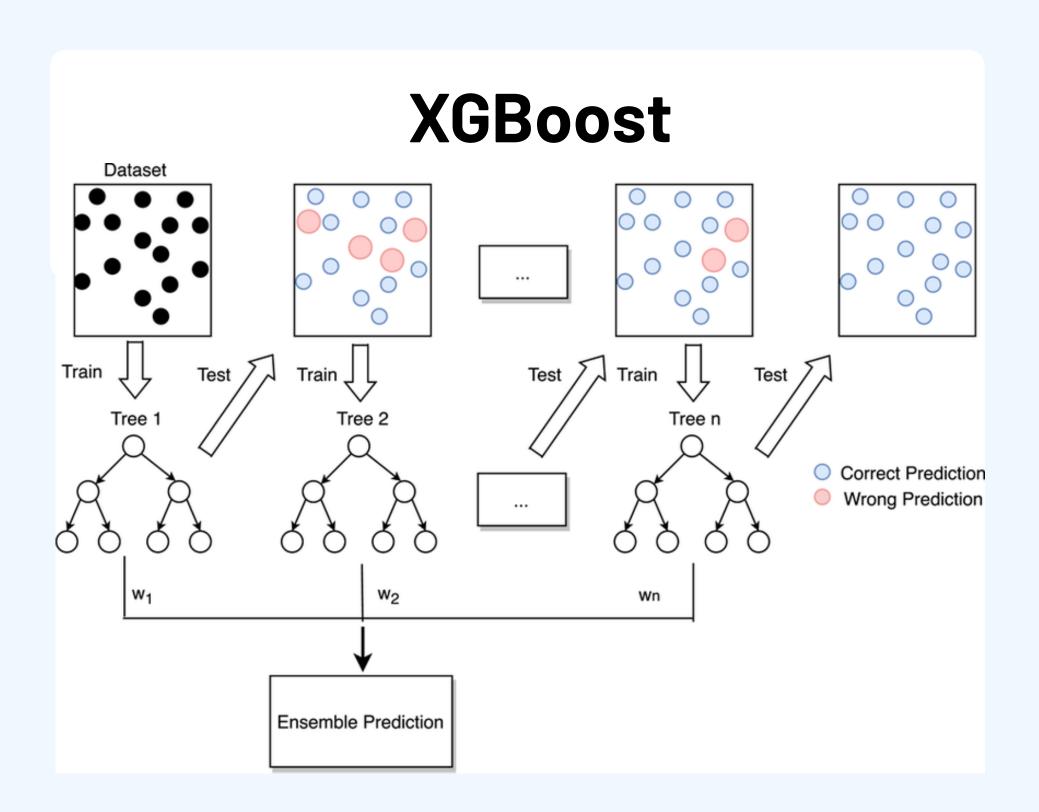
Le Bagging: Plusieurs cerveaux, une seule décision

- Principe : Plusieurs modèles entraînés sur des données légèrement différentes
- Objectif : Réduire la variance, stabiliser les prédictions



Le Boosting: Quand les modèles coopèrent.

- Principe : Modèles entraînés successivement pour corriger les erreurs précédentes
- Objectif : Réduire le biais, augmenter la performance



Les variables explicatives du modèle d'apprentissage

$$Y = f(X_1, X_2, X_3, ..., X_n)$$

X₁ - Prix du sous-jacent (S₀)

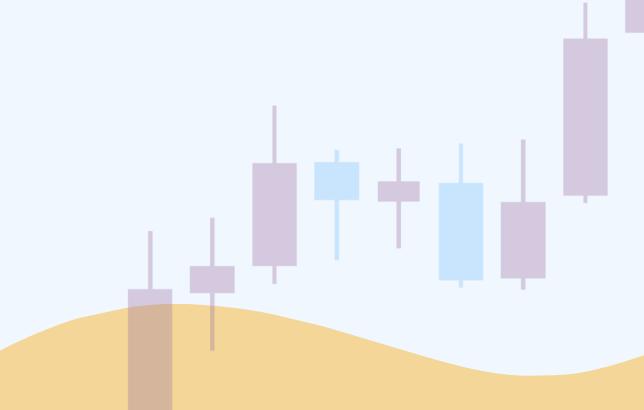
X₂ - Prix d'exercice (K) Seuil fixé à l'avance.

X₃ - Temps jusqu'à l'échéance (T)

 X_4 – Volatilité implicite (σ)

X₅ - Taux sans risque (r)

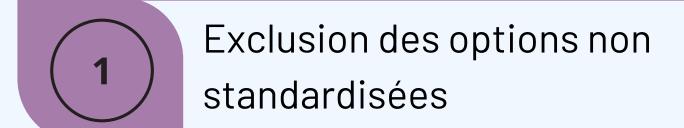
Type de l'option (Call ou Put)



Y est le prix réel observé sur les marchés, celui auquel s'échangent les options entre investisseurs.

Les filtres méthodologiques :

purifier les données pour révéler la vérité

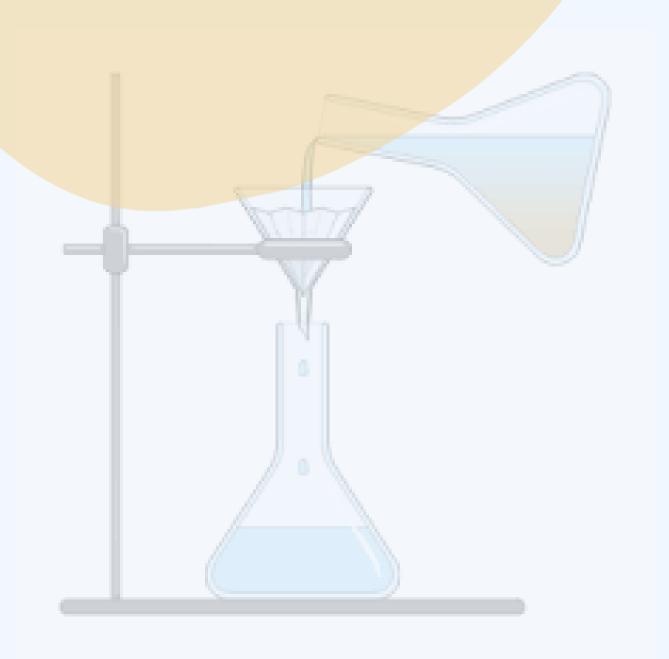


Suppression des maturités < 7 jours

Exclusion des maturités > 1 an et des faibles volumes

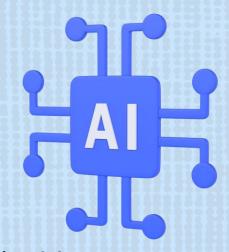
Retrait des volatilités < 15 % ou > 200 %

Exclusion des options à prix trop faibles

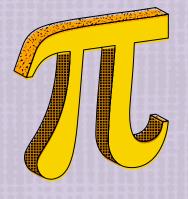


Les modèles et tests appliqués :

Machine Learning vs. modèles classiques : le match.



- Elastic Net
- SVR
- Random Forest
- XGBoost
- Régression linéaire



- Black-Scholes
- Heston
- Merton

Indicateurs de performance

- 1. R² Pouvoir explicatif du modèle
- 2.RMSE Erreur moyenne quadratique
- 3.sMAPE Erreur de pourcentage symétrique
- 4. Validation croisée Robustesse hors échantillon

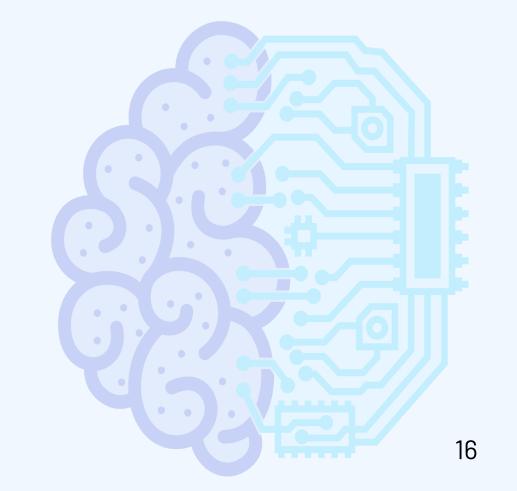
Le verdict des chiffres

Résultats globaux : la supériorité nette du Machine Learning

Model	RMSE	sMAPE	R^2
SVR	9.559339	52.47565	0.9488004
Random Forest	14.250985	27.16543	0.8905793
XGBoost	13.979909	43.08334	0.8950934
Elastic Net	35.692689	107.02270	0.2609857
Linear Regression	35.639320	107.21046	0.2631940
Black-Scholes	335.505764	154.49687	0.2013207

Performance selon les secteurs

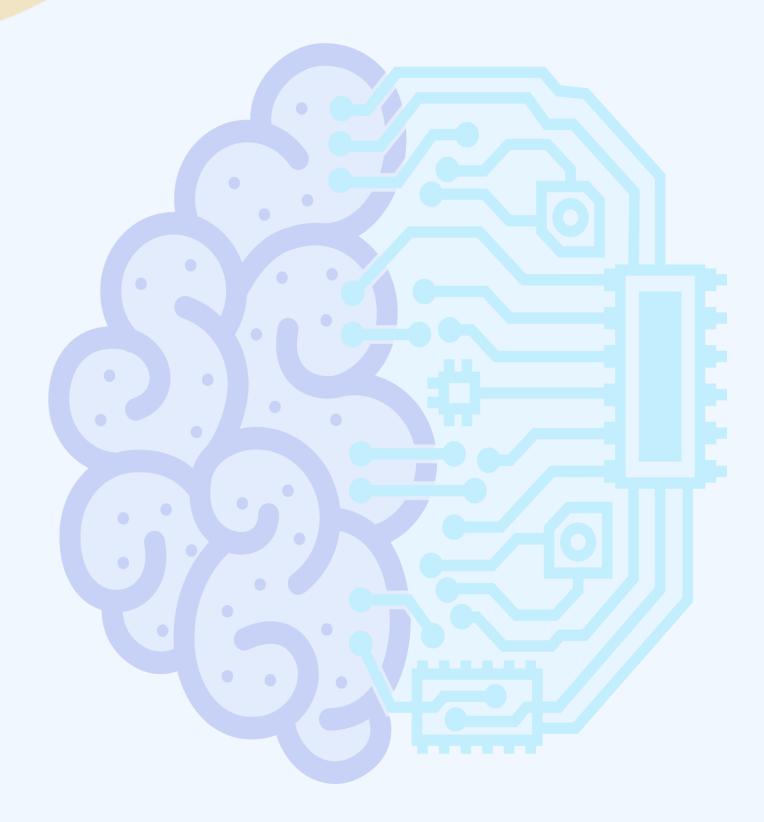
Sector Type	RF RMSE	SVR RMSE	XGB RMSE	BS RMSE
Consumer Staples	67.3	63.6	58.3	322.0
ETF	40.5	53.3	30.1	245.0
Finance	31.1	58.8	23.0	148.0
Healthcare	29.5	60.6	24.5	222.0
Indices	107.0	93.9	95.6	949.0
Industrial	23.8	55.2	22.5	119.0
Obligations	6.34	57.4	6.35	53.5
Technology	180.0	200.0	190.0	213.0



Le verdict des

Résultats globaux : la supériorité nette du Machine Learning

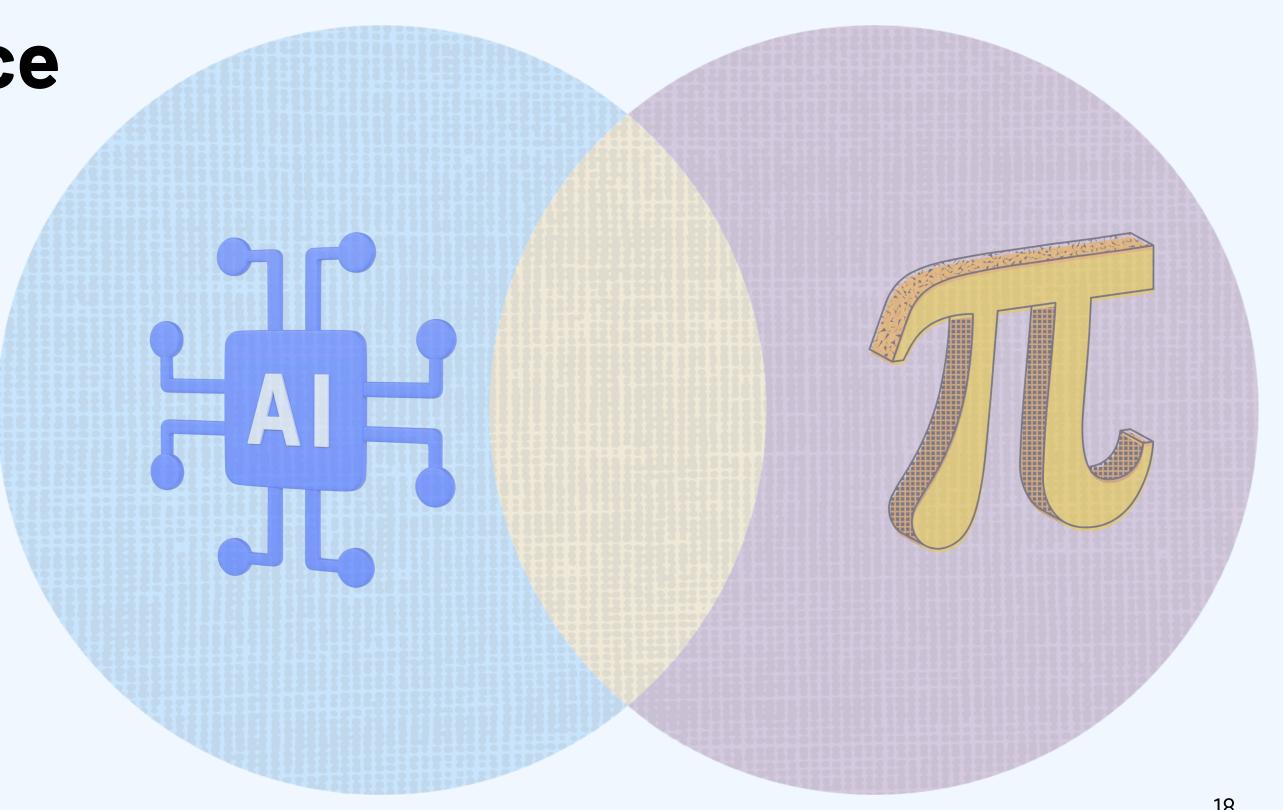
Model	RMSE
SVR	9.559339
Random Forest	14.250985
XGBoost	13.979909
Monte Carlo	610.353778
Merton	153.374677
Heston	587.170000
Black-Scholes	335.505764



Conclusion:

Quand la finance apprend du chaos

De la modélisation à l'apprentissage La finance n'imite plus le monde, elle s'y adapte.



Perspectives d'évolution: la suite du voyage

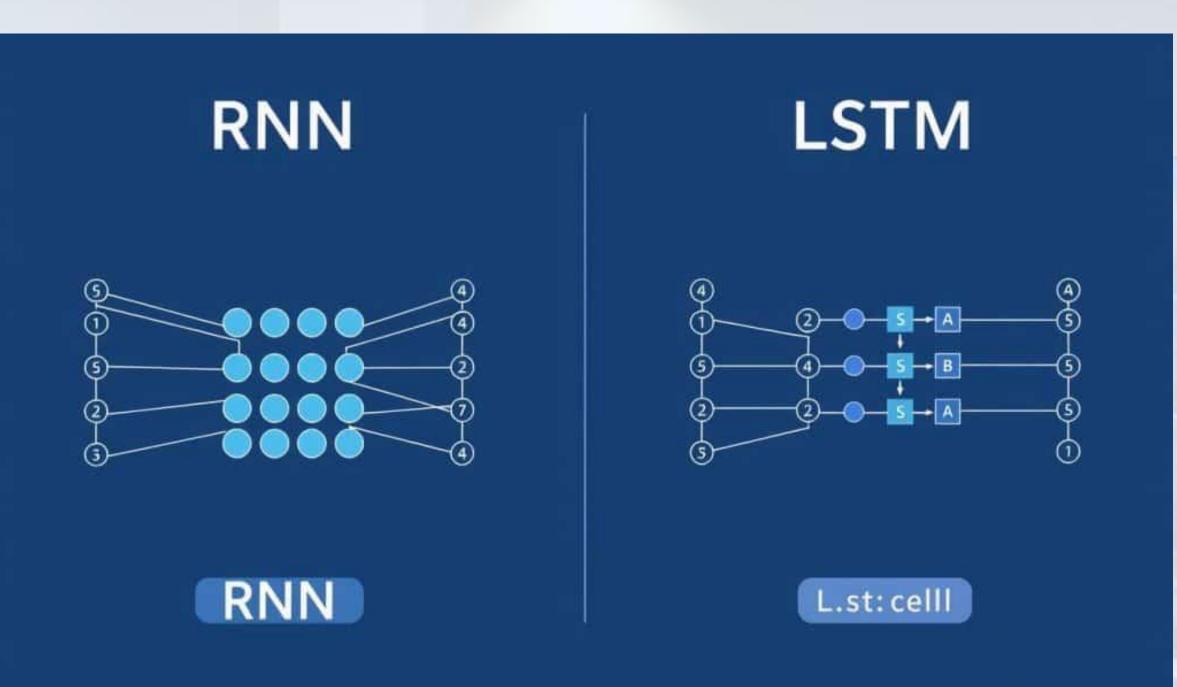
Axe d'évolution:

- 1. Enrichir les variables
- 2. Étendre à d'autres produits
- 3. Créer une hybridation

Perspectives d'évolution : la suite du voyage

Capter la dimension temporelle : quand les modèles apprennent le temps

"Une option est une histoire, elle naît, vit et meurt."



Perspectives d'évolution: la suite du voyage

Le Machine Learning face aux crises :

2008, COVID, 2022 : les crashs comme leçons

- Tester la résilience
- Évaluer la réactivité adaptative
- Vérifier la stabilité à long terme

Merci pour votre attention