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Volatility Fitting Problem and why 7

 Model
Bid ¢ Ask Bid ¢ Ask _Bid
Mark-to-market quoted price P: {PCa”/Put, PCa”/Put} — {(Tca”/Put,JCa”/Put} — {0 , O } for

different moneyness (k1 ..., k,) where ¢ is a non unique mapping and ¢M°d'= Black-Scholes for Ex.
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Encoding the market data:

Many methods in the industry to encode the implied volatility information 3
@ Non-Parametric grid of impl. Vol then interpolation via simple spline.
@ Modelling the implied density of the asset directly ( Carr and Wu approach)

@ Use a diffusion style model ( (L)SV models)

3flexible and compatible with arbitrage constraints (call spread, butterfly and calendar spread)
4Ex: Stochastic volatility inspired (SVI) parameterization by Gatheral and Antoine Jacquier: 0 = (a, b, p, m, o)

WSY(K)? = a+ b(p(k — m) +/(k — m)2 + 0?)
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@ Non-Parametric grid of impl. Vol then interpolation via simple spline.
@ Modelling the implied density of the asset directly ( Carr and Wu approach)

Use a diffusion style model ( (L)SV models)

Surface-Level Parametrizations *

— In this setting, we model the vol with a parametric functional \IJ;f”(f{) for a given maturity.

3flexible and compatible with arbitrage constraints (call spread, butterfly and calendar spread)
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Traditional approach for the Volatility Fitting Problem
Traditional approach to volatility fitting with Parametrisation:

= Choice of the target objective function:® : Among Others, the squared-error loss

Do wil(ti, k)
EJ,‘]:1 wj

oMb, kj) — W (k)

O-spread ( ti7 K,j)

with £(t;, k;) == , wj = Black-Scholes Vega (1)

= Given vol. surf. param. W and ¢(0y,), adjust @, to match the mid market observable impl. vol. oM

Drawbacks:

@ Large set of conditions (liquidity, macro-events, term-structure, stability)— optimizer too heavy to run
@ Imply an optimisation at each move of the market (speed and reliability).

@ Cannot re-use past accumulated experiences (every output is flashed out).

@ Do not handle very well a case with market data limitations and irregularities.

= We rely on a fully Al-based method to learn market regimes and discover optimal behaviours.

5Practitioners aim at positioning the model implied volatility at the mid.
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A Reinforcement Learning Framework and Algorithm Background on Reinforcement Learning

Towards a Novel Framework: Background on Reinforcement Learning.

An agent reinforced with awards based on its interaction
with the environment would learn to operate optimally in
that environment to maximize the rewards.

Action At

o The agent observes a current state s, € S C R, takes an action a; € A C R" drawn from the policy
MN>n:S— A (resp. P(A)) and receives a reward r; = r(as, st).
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Towards a Novel Framework: Background on Reinforcement Learning.

An agent reinforced with awards based on its interaction
with the environment would learn to operate optimally in
that environment to maximize the rewards.

Action At

o The agent observes a current state s, € S C R, takes an action a; € A C R" drawn from the policy
MN>n:S— A (resp. P(A)) and receives a reward r; = r(as, st).

@ Set v € [0, 1], define the Return from a state from following the policy 7, Ry = Z,T:t Y= (s;, a;)

@ state-action value function Q™ (s, a) = E™[R;|s; = s, a; = a].

@ Mathematical formulation of the problem: ‘ 7 = argmax,cn QT ‘
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Problem Statement in Reinforcement Learning:

KT L
— < ——
z// i
(a) (b)
o Fixed expiry T, and observe the market at time t;, i.e. a collection
{aé:f,/Put(t,-, k) 0 Cuiy s put (tis K/j)} o) of markets quotes for different moneyness (1, ..., k).
Jj€1,...,n

@ we consider a parametrisation \U;P’ of the volatility slice with a vector of K parameters.
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RL Framework for Fitting:

@ Starting from a prior parametrized volatility surface \U;TOI (i.e. the latest fit is the prior input).
£

parametric For

error = -reware

prioe

nced Fitting: a reinforcemen ng approach
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Problem Statement in Reinforcement Learning
Goodness of Fit in RL-Based Volatility Fitting

@ Mean squared error (MSE) © defined by :

n

€0,) = Y (o"7(t) ~ () ®)

j=1

e The problem is to find the shifted vector Af; = (A6}, ..., AGF) to bump the old parameters 0, in

order to maximize our selected reward function. | A0y = argmax,; g Q7 (st;, Aby,).

with Q7 (s, Ady) = S, Eie a)ps {w—mr(st,Aei)} and r(se, ar = AGy) = —£(6,)

SAlternative. Setting oP®3d(t;, ;) := Uéfﬁ/ — aff’,ﬂj the volatility spread, we define:

oMt kj) — Wi (k)

o-spread ( t; , K/j)

60.) =3 vegas(xy) @
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A Reinforcement Learning Framework and Algorithm EVECRNIVININENT

Market environment and Non Linear functional approximation by FCNNs:

@ States are the collection of observable market
quotes: .
St = (O'Bid(tf+17Ifj),UASk(tthﬁj),@gi, ...,95 )j t L

@ Actions are the bumps to apply in order to shift
the prior volatility parametrization:

At — Aat/H 0ti+1 - eti

© Rewards are the opposite of well designed errors. o
r(sti+1>afi+1 = Aal’fﬂ) == (affﬂ)

Qﬂ(sturu ati+1) = Zk tii1 (Sk,ak ~pr ['Y i) 5(9/()]

vel surface Gl

© Belecall s
© Bubput: (e

asz»l (Stf+1) = arg maxawl €A Qﬂ(sti+17 afiAl) Tt

Remark: Af (the action vectors) can take any
values in R space: = continuous actions spaces.
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Actor Critic: Deep Deterministic Policy Gradient.(Lillicrap et al., 2015)

@ off-policy actor-critic method that learns a deterministic policy in continuous domain.

TS gsale™
O,
os o8
VY
o
D 7
DDPG 0550y
DL
#5104
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Actor Critic: Deep Deterministic Policy Gradient.(Lillicrap et al., 2015)

@ off-policy actor-critic method that learns a deterministic policy in continuous domain.

molking decitions o e

"R gs,al0®)

O

Z J‘) .”, )
DDLP& 5O LAFIO—y
improving decisions Actor nct i N SOl .
‘- . wse")

@ Action network: DPG= Deep Policy gradient

ar ~ 7rD(5t, 07) + e with ¢, ~N(0,02/x) and o, = max(oo(l — %)4,amin)
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Actor Critic: Deep Deterministic Policy Gradient.(Lillicrap et al., 2015)

@ off-policy actor-critic method that learns a deterministic policy in continuous domain.

making decisions " oPt wpdate

improving decisions

DbDP&

@ Action network: DPG= Deep Policy gradient

ar ~ 7rD(5t, 07) + e with ¢, ~N(0,02/x) and o, = max(oo(l — %)4,amin)

o Critic network: Q-Learning and Bellman equation.
Ri’ = Zszt 7(i_t)r(si? ai)
Q™ (st,ar) = E[R:

st a1 = L(QQ) = E[(Q" (st, 3t?90) — [r(st;a) + Q™ (st41, arg; QQ)])z]
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Numerical results: Convergence of DDPG Algorithm.

@ To assess the performance of the RL algorithms for the volatility fitting, we consider toy problems of
increasing complexity and perform a Monte Carlo on 5 differents random seeds:

@ Static scenario:
@ we explore the scenarios where the market conditions remain constant.
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Static Market, DDPG algorithm, MSE Reward:

Below, best response of the agent amongst the last 1000 episodes (blue) and the mean of the last 1000
(d) Inverse Smile.
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DDPG: Convergence and Consistency.

@ Performance of the RL algorithms: Monte Carlo on 5 differents random seeds:

@ Static scenario:

o RL agents perform as-good as traditional approaches in fitting volatility curve.

Table: DDPG MSE Rewards

type Skew High Smile  Inv. Smile

Bench -0.011913 -0.0000220 -0.0000436
seeds’ avg -0.012145  -0.000163  -0.000315

o Final rewards achieved is close to the one coming from the optimizer.

@ Performance is stable across the different market configuration considerered
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Quasi Dynamic Scenario: The market evolve freely.
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Figure: Training and Consistency over random seeds.
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Quasi Dynamic Scenario, MSE Reward

2.Validation Phase: We compare the performance of different successful agents under different seeds.

Mean over seeds of reward during Validationfevaluation episode. Mean over seeds of reward during Validation/evaluation episode.
Reward evolution of the 1th test episode:

Reward evolution of the 1th test episode:
Blue=Stop, Green=Not stop agents Volatilities of step25 of the 1th test episode

Blue=Stop, Green=Not stop agents Volatilities of step2 of the 1th test episode
000 ] sz benchmark_fit 000 TNV TS DT S M 0325 { o benchmark_fit
PR ANNIA A=A A — ol step 25 AR WS . — woistep2
i ' ® Md 0300
0024 . { 03s0 | 4% bl o X . Md
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s 0275 e Ba
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ent2
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Figure: Evolution of mean episodic rewards(several
random seeds) and Implied volatility(of one selected step)
for a wide spread stock with DDPG.

Figure: Evolution of mean episodic rewards(several
random seeds) and Implied volatility(of one selected step)
for a tight spread stock with DDPG.

E. Gnabeyeu, Ecole Polytechnique. Solving The Dynamic Volatility Fitting Problem: October 14, 2025 16 /18



Quasi Dynamic Scenario, MSE Reward, Testing Phase

3.Testing Phase: we assess the performance of the best agent in a test episode.

Vol fitting animation
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Conclusion and Prospects

@ Sum up,

o A wide range of problems can be tackled with Deep RL Actor-Critic methods while neural networks help

to approximate the solution function.”

o We showed that DRL algorithms are natively tailored for the volatility fitting problem:

@ native exploration
o effective catalog of past experiences(re-use past accumulated experiences)

@ handle complex objective function (desk PnL).

7optimal execution, portfolio optimization, option pricing and hedging, market making, smart-order routing
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@ Sum up,

o A wide range of problems can be tackled with Deep RL Actor-Critic methods while neural networks help

to approximate the solution function.”

o We showed that DRL algorithms are natively tailored for the volatility fitting problem:

@ native exploration
o effective catalog of past experiences(re-use past accumulated experiences)

@ handle complex objective function (desk PnL).

@ Future work could be:
o Reflects stylistic effects in volatility surface term-structure.

o Careful rewards shaping and environment design.

7optimal execution, portfolio optimization, option pricing and hedging, market making, smart-order routing
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Thanks for your attention!
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