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Volatility Fitting Problem and why ?

Mark-to-market quoted price P:
{
PAsk
Call/Put ,P

Bid
Call/Put

}
ϕModel

−−−→
{
σAsk
Call/Put , σ

Bid
Call/Put

}
ϕ−→

{
σAsk , σBid

}
for

different moneyness (κ1, ..., κn) where ϕ is a non unique mapping and ϕModel= Black-Scholes for Ex.

The volatility fitting problems aims to match the
market implied volatility. It is used:

To price structured products with volatility
exposure.

For risk management

etc.
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General Overview of the Volatility Fitting Problem Volatility Fitting: Problem Statement

Encoding the market data:

Many methods in the industry to encode the implied volatility information 3

Non-Parametric grid of impl. Vol then interpolation via simple spline.

Modelling the implied density of the asset directly ( Carr and Wu approach)

Use a diffusion style model ( (L)SV models)

Surface-Level Parametrizations 4

→ In this setting, we model the vol with a parametric functional Ψvol
θ⃗

(κ) for a given maturity.

3flexible and compatible with arbitrage constraints (call spread, butterfly and calendar spread)
4Ex: Stochastic volatility inspired (SVI) parameterization by Gatheral and Antoine Jacquier: θ⃗ = (a, b, ρ,m, σ)

ΨSVI
θ⃗

(k)2 = a+ b(ρ(k −m) +
√

(k −m)2 + σ2)
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General Overview of the Volatility Fitting Problem Traditional approach for the Volatility Fitting Problem

Traditional approach to volatility fitting with Parametrisation:

⇒ Choice of the target objective function:5 : Among Others, the squared-error loss

ξ(θ⃗ti ) :=

√∑n
j=1 wjℓ(ti , κj)2∑n

j=1 wj
with ℓ(ti , κj) :=

σMid(ti , κj)−Ψvol
θ⃗ti
(κj)

σspread(ti , κj)
, wj = Black-Scholes Vega (1)

⇒ Given vol. surf. param. Ψθ⃗ti
and ξ(θ⃗ti ), adjust θ⃗ti to match the mid market observable impl. vol. σMid

Drawbacks:

Large set of conditions (liquidity, macro-events, term-structure, stability)→ optimizer too heavy to run

Imply an optimisation at each move of the market (speed and reliability).

Cannot re-use past accumulated experiences (every output is flashed out).

Do not handle very well a case with market data limitations and irregularities.

⇒ We rely on a fully AI-based method to learn market regimes and discover optimal behaviours.

5Practitioners aim at positioning the model implied volatility at the mid.
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A Reinforcement Learning Framework and Algorithm Background on Reinforcement Learning

Towards a Novel Framework: Background on Reinforcement Learning.

An agent reinforced with awards based on its interaction
with the environment would learn to operate optimally in
that environment to maximize the rewards.

The agent observes a current state st ∈ S ⊂ Rd , takes an action at ∈ A ⊂ Rn drawn from the policy
Π ⊃ π : S → A (resp. P(A)) and receives a reward rt = r(at , st).

Set γ ∈ [0, 1], define the Return from a state from following the policy π, Rt =
∑T

i=t γ
(i−t)r(si , ai )

state-action value function Qπ(s, a) = Eπ[Rt |st = s, at = a].

Mathematical formulation of the problem: π∗ = argmaxπ∈Π Qπ
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A Reinforcement Learning Framework and Algorithm Problem Statement in Reinforcement Learning

Problem Statement in Reinforcement Learning:

(a) (b)

Fixed expiry T, and observe the market at time ti , i.e. a collection{
σAsk
Call/Put(ti , κj), σ

Bid
Call/Put(ti , κj)

}
j∈[1,...,n]

of markets quotes for different moneyness (κ1, ..., κn).

we consider a parametrisation Ψvol
θ⃗

of the volatility slice with a vector of K parameters.
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A Reinforcement Learning Framework and Algorithm Problem Statement in Reinforcement Learning

RL Framework for Fitting:

Starting from a prior parametrized volatility surface Ψvol
θ⃗ti

( i.e. the latest fit is the prior input).
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Goodness of Fit in RL-Based Volatility Fitting

Mean squared error (MSE) 6 defined by :

ξ(θ⃗ti ) :=
n∑

j=1

(
σMid(ti , κj)−Ψvol

θ⃗ti
(ki )

)2

(3)

The problem is to find the shifted vector ∆θ⃗ti =
(
∆θ1ti , ...,∆θKti

)
to bump the old parameters θ⃗ti in

order to maximize our selected reward function. ∆θ⃗∗ti = argmax∆θ⃗ti∈RK Qπ(sti ,∆θ⃗ti ).

with Qπ(sti ,∆θ⃗ti ) =
∑T

t=ti
E(st ,at)∼ρπ

[
γ(t−ti )r(st ,∆θ⃗t)

]
and r(st , at = ∆θ⃗t) = −ξ(θt)

6Alternative. Setting σspread(ti , κj ) := σAsk
ti ,κj

− σBid
ti ,κj

the volatility spread, we define:

ξ(θ⃗ti ) :=
n∑

j=1

vegaBS(κj)

σMid(ti , κj)−Ψvol
θ⃗ti
(κj)

σspread(ti , κj)

2

(2)
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A Reinforcement Learning Framework and Algorithm Market environment

Market environment and Non Linear functional approximation by FCNNs:

1 States are the collection of observable market
quotes:
sti+1 =

(
σBid(ti+1, κj), σ

Ask(ti+1, κj), θ
1
ti , ..., θ

K
ti

)
j

2 Actions are the bumps to apply in order to shift
the prior volatility parametrization:
ati+1 = ∆θ⃗ti+1 = θ⃗ti+1 − θ⃗ti

3 Rewards are the opposite of well designed errors.
r(sti+1 , ati+1 = ∆θ⃗ti+1) = −ξ(θti+1)

Qπ(sti+1 , ati+1) = −
∑T

k=ti+1
E(sk ,ak )∼ρπ

[γ(k−ti+1)ξ(θ⃗k)].

a∗ti+1
(sti+1) = argmaxati+1

∈A Qπ(sti+1 , ati+1)

Remark: ∆θ⃗ (the action vectors) can take any
values in RK space: ⇒ continuous actions spaces.

Figure: The old vol surface is bumped to a new one
following the move of the market, conditional on prior
volatility surface.
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A Reinforcement Learning Framework and Algorithm Deep Deterministic Policy Gradient Algorithm

Actor Critic: Deep Deterministic Policy Gradient.(Lillicrap et al., 2015)

off-policy actor-critic method that learns a deterministic policy in continuous domain.

Action network: DPG= Deep Policy gradient

at ∼ πD(st , θ
π) + ϵt with ϵt ∼ N (0, σ2

nIK ) and σn = max(σ0(1−
n

N
)4, σmin)

Critic network: Q-Learning and Bellman equation.{
Rt =

∑T
i=t γ

(i−t)r(si , ai )

Qπ(st , at) = E[Rt |st , at ]
⇒ L(θQ) = E[(Qπ(st , at ; θ

Q)− [r(st , at) + γQπ(st+1, at+1; θ
Q)])2]
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Numerical Results Static Market, MSE Reward

Numerical results: Convergence of DDPG Algorithm.

To assess the performance of the RL algorithms for the volatility fitting, we consider toy problems of
increasing complexity and perform a Monte Carlo on 5 differents random seeds:

1 Static scenario:

we explore the scenarios where the market conditions remain constant.

Play Video
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Numerical Results Static Market, MSE Reward

Static Market, DDPG algorithm, MSE Reward:

Below, best response of the agent amongst the last 1000 episodes (blue) and the mean of the last 1000
volatilities slices ( red) (a) High Smile (b) Skew (c) High Skew (d) Inverse Smile.

(a) (b)

(c) (d)

Figure: (a) High Smile (b) Skew (c) High Skew (d) Inverse Smile
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Numerical Results Static Market, MSE Reward

DDPG: Convergence and Consistency.

Performance of the RL algorithms: Monte Carlo on 5 differents random seeds:

1 Static scenario:

RL agents perform as-good as traditional approaches in fitting volatility curve.

Table: DDPG MSE Rewards

type Skew High Smile Inv. Smile

Bench -0.011913 -0.0000220 -0.0000436
seeds’ avg -0.012145 -0.000163 -0.000315

Final rewards achieved is close to the one coming from the optimizer.

Performance is stable across the different market configuration considerered
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Numerical Results Quasi Dynamic Scenario, MSE Reward

Quasi Dynamic Scenario: The market evolve freely.

Figure: Training and Consistency over random seeds.
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Numerical Results Quasi Dynamic Scenario, MSE Reward

Quasi Dynamic Scenario, MSE Reward

2.Validation Phase: We compare the performance of different successful agents under different seeds.

Figure: Evolution of mean episodic rewards(several
random seeds) and Implied volatility(of one selected step)
for a wide spread stock with DDPG.

Figure: Evolution of mean episodic rewards(several
random seeds) and Implied volatility(of one selected step)
for a tight spread stock with DDPG.
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Numerical Results Quasi Dynamic Scenario, MSE Reward

Quasi Dynamic Scenario, MSE Reward, Testing Phase

3.Testing Phase: we assess the performance of the best agent in a test episode.

Play Video

Vol fitting animation
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Conclusion and Prospects

1 Sum up,

A wide range of problems can be tackled with Deep RL Actor-Critic methods while neural networks help
to approximate the solution function.7

We showed that DRL algorithms are natively tailored for the volatility fitting problem:

native exploration

effective catalog of past experiences(re-use past accumulated experiences)

handle complex objective function (desk PnL).

2 Future work could be:

Reflects stylistic effects in volatility surface term-structure.

Careful rewards shaping and environment design.

7optimal execution, portfolio optimization, option pricing and hedging, market making, smart order routing
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Thanks for your attention!
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