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Abstract

In this thesis, I extract firms’ cyber risk with a machine learning al-
gorithm measuring the proximity between their disclosures and a ded-
icated cyber corpus. This approach outperforms dictionary methods, is
able to make use of the full disclosure and not only dedicated sections,
and generates a cyber risk measure that is uncorrelated with other firms’
characteristics. I find that a portfolio of US-listed stocks in the high cy-
ber risk quantile generates an excess return of 18.72% p.a. Moreover,
a long-short cyber risk portfolio has a significant and positive risk pre-
mium of 6.93% p.a., robust to all factors’ benchmarks. Finally, using a
Bayesian asset pricing method, I show that my cyber risk factor is the
essential feature that allows any multi-factor model to price the cross-
section of stock returns.

I appreciate helpful comments from seminar participants at the Cyber Alp Retreat 2023.



Chapter 1

Introduction

This thesis arises from a collaboration between EPFL and the Cyber-
Defence Campus (CYD Campus). Founded in January 2009, the CYD
Campus depends on armasuisse Science and Technology, the scientific
branch of the federal office for defense procurement. More specifically,
this study was carried out within the Technology Monitoring (TM) team
of the CYD Campus, whose primary purpose is to provide an anticipa-
tion platform for cybersecurity technologies. TM employs both qualita-
tive and quantitative approaches to identify emerging cyber technologies
and firms. It does the former through scouting and the latter through
the analysis of publicly available data. This research uses quantitative
finance methods to contribute to the objectives of the CYD Campus.

One of the objectives of the CYD Campus is to guide stakeholders
to make more informed decisions for investments and strategic procure-
ment. Although the decision process has many ramifications, being able
to get insights on the public equity markets is helpful to estimate the cost
of firms associated with different types of risks, and hence the value of
insurance that these firms should pay to mitigate these risks. In partic-
ular, I am interested in cyber risk.

The continuous digitization of our surroundings, coupled with the
widespread utilization of Internet-of-Things devices and the intersection
of geopolitical interests, fuels an ongoing surge in cyberattacks, accom-
panied by escalating costs. As Chuck Robbins, Chair and CEO at Cisco,
put it,

If it were measured as a country, then cybercrime — which
was predicted to inflict damages totaling $6 trillion USD glob-
ally in 2021 — would be the world’s third-largest economy af-
ter the U.S. and China.

As cyberattacks become more widespread and costly, cyber insurance
contracts become vital both for public companies and governments, who

1
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must assess the global cyber risk of the economy. These insurance con-
tracts, however, need a thorough understanding of the systematic risks
in the economy and the firm-level cyber risk. This is why Mario Greco,
CEO of Zurich Insurance group, said in a recent interview that cyber-
attacks are set to become “uninsurable” and called on governments to
“set up private-public schemes to handle systemic cyber risks that can’t
be quantified, similar to those that exist in some jurisdictions for earth-
quakes or terror attacks”1.

In this paper, I develop a method to quantify the cyber risk of a com-
pany based on its disclosures and investigate whether this risk is costly
to firms in the form of a market risk premium on their stock returns. To
do this, I collect financial fillings, monthly returns, and other firm char-
acteristics for over 7,000 firms, listed on stock markets in the United
States, between January 2007 and December 2022. I use a machine
learning algorithm called “Paragraph Vector” in combination with the
MITRE ATT&CK cybersecurity knowledgebase to score each firm’s fil-
ing based on its cybersecurity content.

I find evidence that the cyber risk does not correlate with firm size,
book-to-market ratio, beta, and other standard firms’ characteristics known
to help price stock returns. At the aggregated level, my measure shows a
monotonic increasing trend, with a score moving from 0.51 to 0.54 out of
one, whereas the cross-sectional distribution of that score is extremely
narrow (standard deviation of 0.03). I compare my cyber risk measure
across Fama-French 12 industries and find results supporting my intu-
ition, with “Business Equipment” and “Telephone and Television Trans-
mission” being the riskiest and “Oil and Gas” and “Utilities”, the safest.

I find that the cyber risk sorted long-short portfolio, which invests in
high cyber risk stocks and shorts low cyber risk stocks, has an average
annual excess return of 6.93% and is statistically significant at the 10 or
5% level even when controlling for common risk factors. This portfolio
performs especially well before the first release of a cyber risk factor on
SSRN, with an average annual excess return of 11.88%, and is statisti-
cally significant at the 1% level.

I use asset pricing tests and find that the cyber risk generates a sig-
nificant premium after controlling for market beta, book-to-market, size,
momentum, operating profitability, and investment aggressiveness (see
Fama and French, 2015). This performance shows up both in cross-
section, with Fama and MacBeth (1973) regressions, and time series,
with no significant joint alphas in Gibbons, Ross, and Shanken (1989)
tests. Using the Bayesian approach of Barillas and Shanken (2018), I ad-
ditionally show that the optimal subset of factors pricing stock returns
always includes my cyber risk factor.
1Available at: https://www.ft.com/content/63ea94fa-c6fc-449f-b2b8-ea29cc83637d

https://www.ft.com/content/63ea94fa-c6fc-449f-b2b8-ea29cc83637d
Michel Crouhy
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Finally, I conduct tests to verify the robustness of my factor. First, I
control that my baseline measure, revised at each new filing, captures
the latent cyber risk and not the immediate effect of a cyberattack. To do
so, I build a long-run cyber risk measure capturing the cumulative cyber
risk effect. The results are virtually unchanged. Second, I control for the
possibility that firms are providing cybersecurity and for which cyber
risk occurrences might be positive. I also do not find any differences
after that control.

The remainder of this work proceeds as follows. Chapter 2 intro-
duces the previous literature and develops related hypotheses. Chapter
3 presents the data, and Chapter 4 the Methods. Chapter 5 details the
results and Chapter 6 concludes.



Chapter 2

Literature review

2.1 Asset pricing
2.1.1 Factor models
Sharpe (1964), Lintner (1965) and Mossin (1966) independently intro-
duced the Capital Asset Pricing Model (CAPM) for pricing individual
assets or portfolios. According to this model, the expected return of an
asset is determined by the risk-free rate of return, the asset’s beta, and
the market risk premium. Beta measures the sensitivity of the asset’s
returns to changes in the overall market. The CAPM has its limitations,
however, and several other risk factors have been proposed to expand the
CAPM model into a factor model.

More generally, factor models are used to model the covariance ma-
trix of stock returns, by encoding information about a very large number
of assets with a much smaller number of factors, such that the unex-
plained variations are uncorrelated. This relation can be written in a
matrix form:

Re = α+ βF + ϵ, (2.1)

where Re are the asset excess returns and F are the factor returns. Sev-
eral factors were proposed, resulting in a “factor zoo”. Most importantly,
Fama and French (1992) show that two firm characteristics, other than
market beta, predict returns: market capitalization and book-to-market
ratio. The combination of these two factors with the market factor re-
sults in a 3-factor model. Carhart (1997) adds a momentum factor, fol-
lowing the work of Jegadeesh and Titman (1993), which is a portfolio
that buys stocks that have performed well in the past year and sell stocks
that have performed badly. Fama and French (2015) present an exten-
sion to their previous model with two new factors: investment and oper-
ating profitability, resulting in a five-factor model.

4
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Following the publication of a large number of factors, Harvey, Liu,
and Zhu (2016) study 316 factors. The authors claim that most research
findings in financial economics are likely false, and many of the factors
that their method deems statistically true have small Sharpe Ratios.

2.1.2 Asset pricing tests
Several asset pricing tests can be used to study factor models. Fama
and MacBeth (1973) present a two-step regression method used to com-
pute both the betas of the factors and their risk-premia. Gibbons et al.
(1989) present a statistic used to test for portfolio efficiency. Their statis-
tic can be generalized to test whether the pricing errors are jointly equal
to zero in a model containing several traded factors. Another methodol-
ogy, presented by Barillas and Shanken (2018), is used to compute the
probability that a given factor model is best for pricing returns amongst
all possible models spanned by the factors under consideration.

2.2 Vector representation of paragraphs
Le and Mikolov (2014) present an unsupervised algorithm called “Para-
graph Vector” that can learn fixed-length vector representations from
variable-length pieces of texts, such as sentences, paragraphs, and doc-
uments. Each piece of text represented by a dense vector can be used
for text classification and sentiment analysis, for example. The advan-
tage of this algorithm over other methods, such as bag-of-words, is that
it learns the semantics of words and sentences. Lau and Baldwin (2016)
perform a rigorous empirical evaluation of this algorithm and provide
recommendations on hyper-parameter settings for general-purpose ap-
plications. Adosoglou, Lombardo, and Pardalos (2021) use the “Para-
graph Vector” algorithm with financial filings (10-K statements). They
construct portfolios based on the semantic differences between two con-
secutive financial reports of each firm. They find that cosine similarity
is the most effective similarity measure to use with neural network em-
beddings, such as the ones obtained using the “Paragraph Vector” algo-
rithm.

2.3 Cybersecurity investments
2.3.1 Optimal cybersecurity investments
Gordon and Loeb (2002) (hereafter, GL) study the optimal amount to in-
vest to protect a given set of information. They use an economic model
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to show that managers should focus on securing moderately vulnera-
ble information sets and invest at most 37% of the expected loss due to
cyber breaches. An extension to this model proposed by Gordon, Loeb,
Lucyshyn, and Zhou (2015a) studies how externalities change the opti-
mal investment and conclude that unless private sector firms consider
the costs of breaches associated with externalities, they will underinvest
in cybersecurity activities. In a further improvement to the GL model,
Farrow and Szanton (2016) introduces a model where investments may
reduce not only the probability of an attack but also the loss from an
attack.

Using a real options method, Gordon, Loeb, Lucyshyn, and Zhou
(2015b) explore the impact of information sharing on cybersecurity in-
vestments by showing that reduced uncertainty, resulting from informa-
tion sharing, diminishes the value of the option to defer the investment.
On the other hand, Willemson (2006) and Hausken (2006) disprove the
37% conjecture of the GL model, and present cases with required invest-
ment levels up to 100% of the expected loss.

2.3.2 Economic incentives for cybersecurity investments
Gordon, Loeb, Lucyshyn, and Zhou (2015c) assess the impact of govern-
ment incentives and regulations designed to offset the tendency to un-
derinvest in cybersecurity-related activities by firms. Their results show
that the effectiveness of such incentives depends on the firm’s usage of
an optimal mix of cybersecurity inputs and their willingness to increase
their investments in cybersecurity. Lelarge (2012) studies the outcomes
of incentivizing agents of a large network towards better cybersecurity.
He finds that for a large class of risks, only a small fraction of the ex-
pected loss should be invested. Security investments are always socially
inefficient when agents are strategic, due to network externalities. He
further shows that the alignment of incentives leads to a coordination
problem and an equilibrium with a very high price of anarchy. Wang
(2019) presents an analytical framework for firms to optimize their cy-
bersecurity investment and cyber insurance program. He shows how
private-sector efforts toward countering cybercrimes can reduce aggre-
gate cyber loss and create economic value at the macro level. The pri-
vate sector can reduce the total cybersecurity costs by pooling resources
to pursue cyber offenders and seek loss recoveries actively. Small and
medium-sized firms benefit most from additional security spending at a
micro-level.
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2.4 Cybersecurity costs
2.4.1 Direct estimations
Anderson et al. (2013) perform a systematic study of the costs of cyber-
crime. They disentangle direct, indirect, and defence costs and different
types of cybercrimes. They find that traditional crimes that are con-
ducted online, such as tax and welfare fraud, cost the typical citizen in
the low hundreds of dollars per year. Transitional crimes, such as credit
card fraud, cost a few dollars a year, while new crimes, such as the provi-
sion of botnets, cost tens of cents a year. Indirect and defence costs, how-
ever, are much higher for transitional and new crimes. They conclude
that we should spend less in anticipation of cybercrime and more in re-
sponse. Anderson et al. (2019) revisit the previous study. They observe
that even though payment frauds have doubled over the seven years sep-
arating the initial studies, their average costs for the citizen have fallen.
Their conclusion stays the same, that economic optimality would be in
spending less on cyberattack prevention and more on response and law
enforcement. By employing a Value at Risk (VaR) framework to analyze
various cyber incidents and patterns in the financial sector worldwide,
Bouveret (2018) documents significant cyber risk, revealing an average
country-level loss of USD 97 billion and a VaR range of USD 47 to USD
201 billion, leading to the conclusion that potential aggregated losses in
the financial sector far surpass the coverage capacity of the cyber insur-
ance market by several orders of magnitude. Romanosky (2016) studies
the composition and costs of cyber events. After analyzing a sample of
over 12,000 cyber events, he finds that the cost distribution is heavily
skewed, with an average cost of $ 6 million and a median cost of $ 170k
(comparable to the firm’s annual IT security budget). He concludes that
with these relatively low costs, it may be that firms are engaging in a
privately optimal level of security, and subsequently, firms are investing
in only a modest amount of data protection.

2.4.2 Indirect estimations with municipal bonds
Andreadis, Kalotychou, Louca, Lundblad, and Makridis (2023) study the
impact of information dissemination about cyberattacks through major
news sources on municipalities’ access to finance, focusing on the mu-
nicipal bond market. They employ a differences-in-differences frame-
work and find that both the cumulative number of cyberattacks covered
by county-level news articles and the corresponding number of county-
level cyberattack news articles have a significant adverse effect on mu-
nicipal bond yields. A 1% increase in the number of cyberattacks cov-
ered by news articles leads to an increase in offering yields ranging from



CHAPTER 2. LITERATURE REVIEW 8

3.7 to 5.9 basis points, depending on the level of attack exposure (num-
ber of major cyberattack news in the county). Jensen and Paine (2023)
perform a similar analysis, using data about municipal IT investment,
ransomware attacks and bonds. They find no immediate effect on bond
yields of hacked towns in a 30-day window around a hack. In the 24
months following a ransomware attack, they find that the municipal
bond yields gradually decline and IT spending increases. They argue
that the declining bond yields are driven by a decrease in the cyber risk
of the town as a result of the increase in IT spending.

2.4.3 Indirect estimations with stock price reactions
Gordon, Loeb, and Zhou (2011) study the impact of information secu-
rity breaches on stock returns by computing the cumulative abnormal
returns on a three-day event window centered on newspaper reports of
cybersecurity incidents. They find that news about information secu-
rity breaches had a statistically significant effect on the stock returns
of publicly traded firms. They also show that there has been a signifi-
cant downward shift in the impact of security breaches in the post-9/11
period, as they have become less costly and investors view them as a cor-
porate “nuisance” rather than a potentially serious economic threat. In
a similar study, Campbell, Gordon, Loeb, and Zhou (2003) find a highly
significant negative market reaction for information security breaches
involving unauthorized access to confidential data but no significant re-
action when the breach does not involve confidential information. John-
son, Kang, and Lawson (2017) also study cumulative abnormal returns
around cybersecurity events. They show that publicly traded firms in
the U.S. lost, on average, 0.37% of their equity value when a data breach
occurs. The biggest decline of equity value (3% on average) is due to pay-
ment card fraud, when the card breaches are larger than the average.

Lending, Minnick, and Schorno (2018) study the relationship between
corporate governance and the probability of data breaches. They mea-
sure the changes in stock returns following data breaches and find that
the financial impact of a breach is visible in the long term, as data-
breach firms have –3.5% one-year buy-and-hold abnormal returns. They
also find that banks with breaches have significant declines in deposits
and non-banks have significant declines in sales in the long run. Tosun
(2021) studies how financial markets react to unexpected corporate se-
curity breaches in the short and long run. He finds that the market reac-
tion in terms of trading volume, liquidity, and sell pressure anticipates
negative changes in stock prices, which turn out to be significant and
negative only the day after security breaches are publicly announced.
He also finds that cyberattacks affect firms’ policies in the long run. He
concludes that security breaches represent unexpected negative shocks
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to firms’ reputations. Kamiya, Jun-Koo, Jungmin, Milidonis, and Stulz
(2021) also find evidence of a reputation loss for target firms, in the form
of a decrease in credit ratings or decreased sales growth.

2.4.4 Indirect estimations with disclosures
Gordon, Loeb, and Sohail (2010) assess the market value of voluntary in-
formation security disclosures of firms, using a sample of 1,641 disclos-
ing and 19,266 non-disclosing firm-year observations. They argue that
voluntary disclosures pertaining to information security could serve to
mitigate potential litigation costs and lower the firm’s cost of capital by
reducing the information asymmetry between a firm’s management and
its investor. They find a positive association of the voluntary disclosure
variable with firm value, and the bid-ask spread for firms that provide
voluntary disclosures of information security is statistically lower than
for firms not providing such disclosure. Hilary, Segal, and Zhang (2016)
also study cyber risk disclosures. They find that the market reaction to
cyber breaches is statistically significant but economically limited.

Florackis, Louca, Michaely, and Weber (2023) build a text-based cy-
ber risk measure using a section of 10-K statements called “Item 1.A
Risk Factors”. They extract cyber risk-related sentences from this sec-
tion of the statements using a list of keywords and restrict the analysis
to these sentences. They consider recently hacked firms as a training
sample and compute the cybersecurity exposure of firms as the average
similarity between the bag-of-words representation (vector of the num-
ber of occurrences of each word in their dictionary) of the firm’s cyberse-
curity sentences and the cybersecurity sentences of the training sample.
They find that stocks with high exposure have higher returns on average
but perform worse in periods of cyber risk. Their value-weighted long-
short portfolio has an average monthly excess return of 0.6% (based on
tercile portfolios). Jamilov, Rey, and Tahoun (2021) perform a similar
analysis using quarterly earnings calls. They construct the cyber risk
measure using the frequency of cybersecurity-related keywords in the
earnings calls. They build a cybersecurity factor by first computing the
monthly average cyber risk score of the subset of firms with non-zero
scores and then fitting an AR(1) model to the time series and extracting
the residuals. This factor captures the shocks to cyber risk. They find
a factor structure in the firm-level measure of cybersecurity, that is the
long-short portfolio built on cybersecurity beta sorted portfolios has an
average annual return of -3.3% (the sign is due to the fact that the factor
captures shocks to cybersecurity).

I am only aware of the two studies above that focus on cyber risk and
its factor structure using disclosures. However, both studies use a dic-
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tionary approach that leaves many firm-year observations with a cyber
risk of zero (71% of firms in 2007 in the case of Florackis et al. (2023)
and over 98% of earnings calls in 2007 in the case Jamilov et al. (2021)).
Furthermore, this approach does not take into account the context of the
keywords only their presence in the disclosures. To fill this gap, I use the
“Paragraph Vector” algorithm to build a cyber risk measure using firms’
10-K statements. Hence, I define my null hypotheses as follows:

• Ha The cyber risk is not priced in the cross-section of stock returns

• Hb The cyber risk factor is subsumed by other factors



Chapter 3

Data

3.1 Market data
I download public equity data from Wharton Research Data Services
(WRDS)2, in which I use the data from the Center for Research in Se-
curity Prices (CRSP)3 and S&P Global Market Intelligence’s Compustat
database4. I report the list of variables in Table A.3. I develop a Python
script that queries all available information from WRDS’ API and fil-
ters the firms based on the existence of a 10-K filing with the SEC (see
Chapter 3.2 below) so that all of the retained firms have at least one 10-K
statement available. I extract monthly stock returns and financial ratios
for 7,059 firms, between January 2007 and December 2022. I depict the
industry distribution of these firms, using the Fama-French 12 industry
classification in Figure 3.1.

I also download the one-month Treasury bill rate and returns on the
market, book-to-market (HML), size (SMB), momentum (MOM), invest-
ment (CMA) and operating profitability (RMW) factors from the Kenneth
French data repository5.

3.2 10-K statements
10-K statements are financial filings submitted by publicly traded com-
panies to the U.S. Securities and Exchange Commission (SEC) annually.
They contain information such as companies’ financial statements, risk
factors, and executive compensation. I use 10-K statements to build a
cyber risk measure (detailed in Chapter 4).
2Available at: https://wrds-www.wharton.upenn.edu/
3Available at: https://crsp.org/
4Available at: https://www.marketplace.spglobal.com/en/datasets/compustat
5Available at: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

11
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Figure 3.1: Industry distribution

Distribution of firms in the 12 Fama-French industries. Standard Industrial Classifica-
tion (SIC) codes are obtained from CRSP. The conversion table, from SIC to 12 Fama-
French industries, is available on the Kenneth French data repository.

To download these statements, I use the index files from the SEC’s
Edgar archives6. These index files contain information about all the doc-
uments filed by all firms for a specific quarter. Each line of the index file
corresponds to a document and is structured as follows:

CIK|Company Name|Form Type|Date Filed|Filename

where Filename is the URL under which an HTML version of the docu-
ment is available. To identify firms, I use their Central Index Key (CIK),
which is a number used by the SEC to identify corporations and indi-
viduals who have filed disclosures. I develop a Python script that goes
through these index files and identifies URLs that correspond to 10-K
statements, using the Form Type entry. These URLs are then matched
to one of the 7,059 firms mentioned in Chapter 3.1, using the CIK entry.
60,470 10-K statements are identified, which corresponds to 8.6 state-
ments per firm on average. Figure 3.2 shows the number of 10-Ks filed
per year. This number increases from 3,301 in 2007 to 5,370 in 2022.
6Available at: https://www.sec.gov/Archives/edgar/full-index/

https://www.sec.gov/Archives/edgar/full-index/
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Figure 3.2: Number of 10-Ks per year

Number of companies, in the study sample, that have filed a 10-K statement in a given
calendar year.

3.3 Cybersecurity tactics
I use the MITRE ATT&CK7 cybersecurity knowledge base as a refer-
ence for cybersecurity descriptions. This knowledge base was created
in 2013 to document cybersecurity tactics, techniques, and procedures
used by adversaries against particular platforms, such as Windows or
Google Workspace. Figure 3.3 illustrates the structure of the knowledge
base. Each sub-technique has a short description describing it. Table
3.1 shows two sub-technique descriptions from the knowledge base.

There are a total of 14 tactics: reconnaissance, resource develop-
ment, initial access, execution, persistence, privilege escalation, defense
evasion, credential access, discovery, lateral movement, collection, com-
mand and control, exfiltration and impact. There are 785 sub-techniques
across all tactics, all of which are used in Chapter 4.

7Available at: https://attack.mitre.org/

https://attack.mitre.org/


CHAPTER 3. DATA 14

Tactic

Tactics represent the “why” of an ATT&CK technique or sub-
technique. It is the adversary’s tactical goal: the reason for per-
forming an action. For example, an adversary may want to achieve
credential access, collect data or run malicious code.

Technique

Techniques represent “how” an adversary achieves a tactical
goal by performing an action. For example, an adversary
may dump credentials to achieve credential access or may
use social engineering to run malicious code.

Sub-technique

Sub-techniques describe the different types of a tech-
nique. For example, when trying to run malicious
code for social engineering, the adversary may use a
malicious link, a malicious file or a malicious image
for execution.

Figure 3.3: Structure of the tactic descriptions on MITRE
ATT&CK

Description
Tactic Credential Access Adversaries may forge web cookies that

can be used to gain access to web
applications or Internet services. Web
applications and services (hosted in
cloud SaaS environments or
on-premise servers) often use session
cookies to authenticate and authorize
user access.

Technique Forge Web Credentials

Sub-technique Web Cookies

Tactic Reconnaissance Adversaries may gather employee
names that can be used during
targeting. Employee names can be used
to derive email addresses as well as to
help guide other reconnaissance efforts
and/or craft more-believable lures.

Technique Gather Victim Identity Information

Sub-technique Employee Names

Table 3.1: Examples of sub-technique descriptions from MITRE
ATT&CK



Chapter 4

Methodology

4.1 Models and assumptions
4.1.1 Text preprocessing
10-K statements can be downloaded from the SEC Archives as HTML
files (as explained in Chapter 3). I use the BeautifulSoup8 Python li-
brary to extract the usable text from these files. I remove the punctua-
tion and numbers and I set all letters to lowercase. Given the resulting
texts, I develop a Python script that uses the wordfreq9 and NLTK10 li-
braries to divide the text into sentences, remove stop-words ( “the”, “is”,
“and”,...) and remove the most common words of the English language.
Since these words appear frequently in the texts, removing them allows
us to focus on important words, that are related to cybersecurity for ex-
ample.

After pre-processing, the average length of the cybersecurity sub-
technique descriptions from MITRE ATT&CK is close to 40 words (≈
39.7). Based on this number, I develop a Python algorithm to merge con-
secutive sentences from 10-K statements, into paragraphs that have an
average length of close to 40 words, after pre-processing. On average,
I obtain 44 words per paragraph and 638 paragraphs per 10-K state-
ment, with standard deviations of 2.6 words per paragraph and 304
paragraphs per 10-K statement.

4.1.2 Paragraph Vector
The Paragraph Vector model, proposed by Le and Mikolov (2014), is an
extension of the word2vec model (Mikolov, Chen, Corrado, and Dean
(2013)). The Paragraph Vector model aims to learn fixed-length vector
8Available at: https://www.crummy.com/software/BeautifulSoup/
9Available at: https://pypi.org/project/wordfreq/
10Available at: https://www.nltk.org/
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representations from variable-length pieces of text. The main advantage
of this model over other methods, such as bag-of-words, is that seman-
tically similar paragraphs are mapped close to each other in the vector
space.

There are two versions of the model: a distributed memory model
(DM) and a distributed bag-of-words model (DBOW). In the distributed
memory model, the algorithm trains to get both word vectors and para-
graph vectors. During training, the concatenation or the average of the
paragraph vector and the vector representation of context words are
used to predict another word in the paragraph. In the distributed bag-
of-words model, the paragraph vector is trained to predict words in a
window sampled from the paragraph. Word vectors are not trained in
this version. Figure 4.1 illustrates the two models.

Figure 4.1: “Paragraph Vector” model versions

The images were taken from Le and Mikolov (2014).

Both models are unsupervised, as the paragraph vectors are learned
from unlabelled data.

I use the implementation by Gensim called doc2vec11. To train the
model, I use the paragraphs from 10-K statements filed in 2007 as well
as the 785 sub-technique descriptions from MITRE, which together amount
to more than 1.7 million training paragraphs. Using this training sam-
ple, I train DM and DBOW doc2vec models with various vector dimen-
sions, epochs, and window sizes. The baseline for the hyperparameters
is taken from Lau and Baldwin (2016) (see table A.1).

To choose the best model, I compute the vector representations of
the paragraphs from 10 randomly chosen 10-K statements from 2008
(validation sample) using each model and compare the highest-scoring
paragraphs between the models (the scoring algorithm is explained be-
low). I choose the best model as the one where the proportion of the
highest-scoring paragraphs that are cybersecurity-related is the high-
est. Table 4.1 presents the parameters of the best-performing doc2vec
11Available at: https://radimrehurek.com/gensim/models/doc2vec.html

https://radimrehurek.com/gensim/models/doc2vec.html
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model, which is the one used for the remainder of this study. Table A.2
presents the top-scoring paragraphs from the validation sample (after
pre-processing).

Method Training Size Vector Size Window Size Min Count Sub-Sampling Negative Sampling Epoch
DBOW 1.7M 200 15 5 10−5 5 50

Table 4.1: doc2vec parameters

Parameters of the chosen doc2vec model. DBOW stands for distributed bag-of-words.

4.1.3 Cosine similarity
I use cosine similarity to measure the distance between the vector rep-
resentations of two paragraphs, that is, the cosine of the angle between
the two vectors. As explained in Adosoglou et al. (2021), cosine simi-
larity is the most effective similarity measure as the orientation of the
embedding vectors is more stable than their magnitude due to the ran-
dom initialization of the weights of the neural networks.

Cosine similarity is a number between -1 and 1. The closer the vec-
tors, the higher the value. As detailed in Chapter 4.1.4, I only use the
positive cosine similarities and set the negative similarities to zero. The
similarity between two paragraphs, with vector representations v1 and
v2, is therefore computed as sim = max(0, v1·v2

∥v1∥∥v2∥).

4.1.4 Cyber risk score
The cyber risk score is based on the cosine similarities with the cyber-
security descriptions from MITRE ATT&CK. I first compute the vector
representation of every paragraph of every 10-K statement using the
trained doc2vec model. I also compute the vector representation of ev-
ery sub-technique description from MITRE ATT&CK. Next, I compute
the cosine similarity of each paragraph from the 10-K statements with
each of the MITRE descriptions. This gives 785 similarities for each
paragraph from the 10-K statements. The cyber risk score of a para-
graph is the maximum value out of those 785 similarities. Finally, I
compute the score of a 10-K statement as the average score of the 1% of
its highest-scoring paragraphs.

This algorithm is based on the assumption that an average 10-K
statement has at most six or seven cyber risk-related paragraphs, rep-
resenting on average 1% of the paragraphs (there are 638 paragraphs
per 10-K statement on average). This method has several advantages.
First, taking a percentage of the total number of paragraphs, as opposed
to a fixed number of paragraphs, makes it possible to have a meaningful
comparison between 10-K statements that are much shorter or much
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longer than the others. Second, considering only the highest-scoring
paragraphs makes the cyber risk score of the 10-K statement only de-
pendent on paragraphs that are most likely to be cyber risk-related.

As Chapter 4.1.3 mentions, the cosine similarity takes values be-
tween -1 and 1. I only consider the positive values for several reasons.
First, a paragraph with a meaning “opposite” to cybersecurity is not in-
tuitive. Upon inspecting the paragraphs with negative values in the val-
idation sample, I cannot uncover meaningful differences between para-
graphs with negative scores and those with scores close to zero. Further-
more, only considering positive similarities guarantees that the cyber
risk scores are between 0 and 1, making them comparable to the ones
obtained using dictionary methods such as in Jamilov et al. (2021).

Figure 4.2 shows the distribution of the cyber risk scores of the para-
graphs from the 10-K statements of Meta Platforms, Inc. and Tesla, Inc.
filed in 2022. The paragraphs in red are the top 1% of paragraphs with
the highest cyber risk scores. I compute the 10-K cyber risk scores as
the average score of this highest percentile. This yields a score of 0.605
for META and 0.563 for TSLA.

Figure 4.2: Paragraph level score distributions for Meta Plat-
forms and Tesla

The paragraphs are the ones from the 10-Ks filed in 2022. The paragraphs within the
top 1% of cyber risk scores are in red.
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4.2 Asset pricing tests
4.2.1 Fama and MacBeth (1973)
I implement the methodology from Fama and MacBeth (1973) as follows.
First, I estimate security betas using time series regressions with 3-year
rolling windows. This corresponds to the following regression:

Ri = αi,t +
∑
k

βk
i,tFk + ϵi,t, ∀i (4.1)

where βk
i,t is the Ordinary Least Squares beta of asset i on factor k for

the 3-year period ending on date t.
Next, I sort firms into 20 value-weighted portfolios based on their

cyber risk beta. I compute the factor exposures of the portfolios as

βk
p =

N∑
i=1

xi,pβ
k
i (4.2)

where xip is the weight of asset i in portfolio p. As explained in the orig-
inal paper, the betas of portfolios can be much more precise estimates of
the true betas than the betas of individual securities if the errors in the
betas of individual securities are substantially less than perfectly corre-
lated. I standardize the portfolio betas for economic interpretation.

Finally, I estimate gammas using cross-sectional regressions of the
portfolio returns on their lagged factor exposures. This corresponds to
the following regression:

Rp,t = γ0t +
∑
k

γkt β
k
p,t−1 + ϵ∗p,t, ∀t (4.3)

where γkt is the risk premium of factor k. I compute the average risk
premiums over time.

4.2.2 Gibbons et al. (1989)
Gibbons et al. (1989) presents a statistic (GRS) to test for portfolio effi-
ciency, based on the following regression:

Ri,t = αi,p + βi,pRp,t + ϵi,t, ∀i (4.4)

The null hypothesis of the GRS test is H0 : αi,p = 0. This statistic can
be generalized to test whether the pricing errors are jointly equal to
zero when using a model with several traded factors. As presented in
Cochrane (2005), the regression equation is now

Ri = αi +
∑
k

βk
i Fk + ϵi, (4.5)
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where Ri are the returns of portfolio i and Fk are the returns of factor
k. Similarly to the Fama-Macbeth methodology, this methodology uses
portfolios rather than individual securities. Hence, I build 20 portfolios
on a factor beta, as explained in Chapter 5.4.

After computing the regressions from equation 4.5, I compute the
GRS test statistic as,

T −N −K

N

α̂′Σ̂−1α̂

1 + µ̂′Ω̂−1µ̂
∼ FN,T−N−K , (4.6)

where T is the number of time periods, N is the number of portfolios,
K is the number of factors, Σ̂ is the residual covariance matrix, α̂ is the
vector or alphas, µ̂ is the vector of average factor returns and Ω̂ is the
covariance matrix of factors.

I implement this GRS test and compare two model specifications, the
five-factor model from Fama and French (2015) and the same five factors
plus the cyber risk factor.

4.2.3 Barillas and Shanken (2018)
I implement the Bayesian approach of Barillas and Shanken (2018). Us-
ing this method, it is possible to compute the probability that a given
factor model is best for pricing factor returns. The method does not pre-
sume that any model under consideration exactly satisfies the require-
ment that all alphas are zero, as it is possible that some relevant factors
have not been identified. The approach compares the relative success of
the models in predicting the data.

The method is based on Barillas and Shanken (2017). The method
looks at the extent to which a model prices the factors left out and not
the extent to which the model prices test assets.

The unrestricted factor model is

Rt = α+ βFt + ϵt, ϵt ∼ N(0,Σ), (4.7)

and the null hypothesis is H0 : α = 0. The prior for α is concentrated
at zero under the null hypothesis. Under the alternative, they assume a
multivariate normal informative prior for α: P (α|β,Σ) = MVN(0, kΣ),
where k reflects the beliefs about the potential magnitude of deviations
from the expected return relation. By assumption, all the models contain
the market factor.

The marginal likelihood of a model is given by:

ML = MLU (f |Mkt)×MLR(f
∗|Mkt, f)×MLR(r|Mkt, f, f∗), (4.8)

where MLU is the unrestricted regression marginal likelihood, MLR is
the restricted regression marginal likelihood (α constrained to zero), f
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are the included factors and f∗ are the excluded factors. The MLU (X|Y )
notation assumes the following regression equation:
Xt = α + βYt + ϵt. The unrestricted and restricted regression marginal
likelihoods are given by,

MLU = |F ′F |−N/2|S|−(T−K)/2Q

MLR = |F ′F |−N/2|SR|−(T−K)/2,
(4.9)

where |S| and |SR| are the determinants of the N ×N cross-product ma-
trices of the Ordinary Least Squares residuals, T is the number of peri-
ods, K the number of factors, and N the number of portfolios. The scalar
Q is given by

Q =

(
1 +

a

a+ k
(W/T )

)−(T−K)/2(
1 +

k

a

)−N/2

(4.10)

where a = (1+Sh(F )2)/T , k = (Sh2
max−Sh(F )2)/N, W is the GRS F-statistic

times NT/(T−N−K) and Sh(F )2 = µ′Ω−1µ the squared sample Sharpe
Ratio. Under the alternative prior, k is the expected increment to the
squared Sharpe ratio from the addition of one more factor. Shmax is
the maximum expected Sharpe ratio. Barillas and Shanken (2018) take
Shmax = 1.5 × ShMkt, which corresponds to a square root of the prior
expected squared Sharpe ratio for the all factors-tangency portfolio 50%
higher than the market Sharpe ratio. They call this value the prior mul-
tiple. Similarly, I use 1.5 as the baseline value for the prior multiple but
experiment with several values as in the original paper. The posterior
probabilities, conditional on the data D, are given by Bayes’ rule,

P (Mj |D) =
MLj × P (Mj)∑
i
MLi × P (Mi)

, (4.11)

where P (Mj) is the prior probability of the model. Barillas and Shanken
(2018) use uniform prior probabilities to avoid favoring one model over
another. Hence, they cancel out in the division and can be omitted.
MLR(r|Mkt, f, f∗), in equation 4.8, is the same for all combinations of f
and f∗. Hence, it cancels out in the division and can also be omitted.

Following the methodology of Barillas and Shanken (2018), I com-
pute the posterior probabilities for each month from January 2010 until
December 2022. For each computation, I use all of the data available
from January 2009 until the given time.
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Results

5.1 Cyber risk measure
Table 5.1 presents descriptive statistics of the cyber risk measure and
various firm characteristics. The average cyber risk is 0.52, and its dis-
tribution is positively skewed, meaning there are more very high-risk
firms than very low-risk ones. Overall, the cyber risk distribution is nar-
row with a standard deviation of 0.03 and a spread between the top and
bottom percentiles of 0.14. The correlation coefficients between my cyber
risk measure and firms’ characteristics are small, except for Tobin’s Q
(0.23) and the Firm age (-0.17). The latter coefficient is consistent with
the view that older firms are less subject to cyberattacks since their core
businesses are less likely to be IT-related. Given that all other coeffi-
cients are below 0.15 in absolute value, I am confident that my measure
is orthogonal to other characteristics known to price stock returns. I
also compute the correlation coefficient between my measure and that of
Florackis et al. (2023) and obtain 0.34.12

5.1.1 Time series and industry properties
Figure 5.1 presents the cross-sectional average cyber risk for every year
in the study sample. I observe a monotonic positive time trend in line
with the results of Florackis et al. (2023) and Jamilov et al. (2021).

Figure 5.2 shows the average cyber risk by industry, using the Fama-
French 12 industry classification. Industries that rely on technology
systems such as “Business Equipment” and “Telephone and Television
Transmission” have high cyber risk while industries such as “Oil and
Gas” and “Chemicals”, that traditionally rely less on technology systems
12The Florackis et al. (2023) data is available at:

https://alucutac-my.sharepoint.com/personal/christodoulos_louca.
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Mean SD P1 P25 P50 P75 P99 Correlation with
cyber risk

Cyber risk 0.52 0.03 0.47 0.50 0.52 0.54 0.61 -
Firm Size (ln) 20.18 2.39 13.15 18.53 20.25 21.86 25.46 -0.10
Firm Age (ln) 2.70 1.06 -0.88 2.21 2.93 3.41 4.07 -0.17
ROA -0.11 0.47 -2.57 -0.07 0.02 0.07 0.36 -0.05
Book to market ratio 0.68 1.15 0.02 0.24 0.46 0.81 4.42 -0.12
Tobin’s Q 2.20 2.14 0.58 1.09 1.50 2.37 12.15 0.23
Market Beta 1.20 0.84 -1.01 0.71 1.13 1.60 3.90 0.00
Intangibles/Assets 0.17 0.21 0.00 0.00 0.07 0.27 0.78 0.14
Debt/Assets 0.53 0.28 0.06 0.32 0.52 0.70 1.48 -0.09
ROE -0.08 0.61 -2.96 -0.08 0.07 0.15 0.88 -0.06
Price/Earnings 1.55 112.17 -511.4 -4.44 12.57 23.82 294.46 -0.01
Profit Margin -0.38 5.53 -25.20 0.21 0.36 0.57 0.94 0.00
Asset Turnover 0.92 0.74 0.01 0.39 0.76 1.26 3.54 -0.03
Cash Ratio 1.85 3.41 0.01 0.23 0.65 1.81 18.20 0.11
Sales/Invested Capital 1.54 1.59 0.01 0.56 1.08 1.94 8.88 -0.01
Capitalization Ratio 0.30 0.32 0.00 0.02 0.24 0.47 1.54 -0.10
R&D/Sales 0.67 4.21 0.00 0.00 0.00 0.08 19.40 0.03
ROCE 0.00 0.45 -1.97 -0.02 0.09 0.17 0.95 -0.07

Table 5.1: Descriptive statistics of the cyber risk measure and
firm characteristics

Firm-level characteristics are winsorized at the 1st and 99th percentile (by year). The
characteristics are defined in Table A.3.

have lower scores. Nonetheless, the variation of cyber risk across indus-
tries remains limited similar to the overall cyber risk distribution.

5.1.2 Determinants of firm-level cyber risk
To investigate the dependence of cyber risk on firm characteristics, I
perform two regressions, presented in Table 5.2. In model 1, I control
for year- and firm-fixed effects, and in model 2, I control for year- and
industry-fixed effects. In both models, firm age has a statistically sig-
nificant negative coefficient at the 1% level, implying that younger firms
have higher cyber risk. The book-to-market coefficient is negative and
significant at the 1% level, meaning that value firms have a lower cy-
ber risk than growth firms. In model 2, the intangible assets to total
assets coefficient is positive and statistically significant at the 1% level,
which supports the view that firms with more intangible assets, such
as patents or software, have a higher cyber risk. The R-squared is low
for both models, showing that cyber risk can not be readily explained by
firm characteristics.
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Figure 5.1: Evolution of the average cyber risk across all firms

Figure 5.2: Average value of the cyber risk across industries

Firms are classified into industries using the Fama-French 12 industry classification.
Standard Industrial Classification (SIC) codes are obtained from CRSP. The conversion
table, from SIC codes to the 12 Fama-French industries, is available on the Kenneth
French data repository.
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Dependent variable: Firm-level indicator of cyber risk
Model 1 Model 2

Constant -0.416∗∗∗ -0.738∗∗∗

[-24.89] [-14.22]
Firm Size (ln) 0.019 0.024

[0.56] [1.22]
Firm Age (ln) -0.114∗∗∗ -0.211∗∗∗

[-3.91] [-12.09]
ROA 0.057 0.0321∗∗

[0.79] [2.27]
Book to Market -0.023∗∗∗ -0.066∗∗∗

[-4.82] [-3.67]
Tobin’s Q 0.019∗∗∗ 0.112∗∗∗

[2.84] [7.87]
Market Beta -0.009 -0.013

[-1.54] [-1.31]
Intangibles/Assets -0.026∗∗ 0.082∗∗∗

[-2.04] [5.51]
Debt/Assets -0.032∗∗ 0.032

[-2.49] [1.21]
ROE 0.002 -0.009

[0.37] [-0.72]
Price/Earnings 0.005 0.002

[1.20] [0.29]
Profit Margin 0.006 0.048∗∗∗

[1.18] [3.98]
Asset Turnover -0.014 -0.135∗∗∗

[-0.67] [-4.49]
Cash Ratio 0.001 0.019

[0.09] [1.19]
Sales/Invested Capital 0.008 0.104∗∗∗

[0.54] [3.80]
Capital Ratio 0.001 -0.191∗∗∗

[0.02] [-8.49]
R&D/Sales -0.001 -0.003

[-0.22] [-0.30]
ROCE 0.005 0.000

[0.71] [0.01]
Year fixed effect Yes Yes
Industry fixed effect No Yes
Firm fixed effect Yes No
Observations 27760 27760
R-squared 0.2944 0.3921

Table 5.2: Determinants of firm-level cyber risk

Results of regressions of the cyber risk on firm characteristics. t-statistics are reported
in brackets. The variables are standardized, and the standard errors are clustered at the
firm level. *, **, and *** indicate significance at the 10%, 5% and 1% levels, respectively.
The characteristics are defined in Table A.3.
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5.2 Univariate portfolio sorts
I sort firms into portfolios based on their cyber risk and study the returns
of the portfolios. More precisely, I assign firms to five portfolios based
on the cyber risk score of their most recent 10-K statement. I rebalance
the portfolios quarterly to allow for listings and delistings and incorpo-
rate information from new 10-K statements. I build five value-weighted
portfolios, where Portfolio 1 (5) is the low (high) cyber risk portfolio.

5.2.1 Full sample
I track the performance of the portfolios from January 2009 until De-
cember 2022. Figure 5.3 shows the evolution of the cumulative returns
of the five portfolios and the market portfolio. I observe that the higher
the cyber risk of the portfolio, the higher the cumulative returns. Port-
folio 5 significantly outperforms the market.

Figure 5.3: Cyber risk sorted portfolio cumulative returns

Firms are sorted into value-weighted portfolios based on their cyber risk. The portfolios
are rebalanced quarterly. “Market” refers to the market portfolio obtained from the
Kenneth French data repository.

Table 5.3 presents the excess returns and alphas of the portfolios with
respect to three traditional factor models. The average monthly portfo-
lio excess returns increase monotonically from 0.88% to 1.44%, from the
low to high cyber risk portfolios. The long-short portfolio, going long in
Portfolio 5 and short in Portfolio 1, has statistically significant excess re-
turns and alphas, even when controlling for the Fama and French (2015)
five-factor model.



CHAPTER 5. RESULTS 27

Value Weighted Portfolios
L H H-L
P1 P2 P3 P4 P5 P5-P1

A. Portfolios sorted by cyber risk
Average excess return 0.88∗∗∗ 1.02∗∗∗ 1.13∗∗∗ 1.20∗∗∗ 1.44∗∗∗ 0.56∗

[3.20] [3.88] [3.73] [4.65] [4.19] [1.72]
CAPM alpha -0.22 -0.06 -0.04 0.07 0.31 0.54

[-0.95] [-0.42] [-0.35] [1.21] [1.61] [1.32]
FFC alpha -0.14 -0.01 0.03 0.04 0.24∗ 0.38∗

[-1.20] [-0.15] [0.41] [0.62] [1.93] [1.87]
FF5 alpha -0.16 -0.08 0.03 0.04 0.25∗ 0.41∗∗

[-1.62] [-0.89] [0.39] [0.54] [1.89] [2.21]

B. Characteristics
Number of firms 615.7 615.1 615.1 615.1 615.5 -
Cyber risk 0.493 0.507 0.518 0.532 0.572 -

Table 5.3: Average monthly excess returns and alphas (in per-
cent)

FFC refers to the four-factor model of Carhart (1997), and FF5 refers to the five-factor
model of Fama and French (2015). Panel B shows the average number of firms in each
portfolio and the average cyber risk of the portfolios. Newey-West (Newey and West,
1994) t-statistics are reported in brackets. *, **, and *** indicate significance at the
10%, 5% and 1% levels, respectively. Period: January 2009–December 2022
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5.2.2 Before and after Florackis et al. was first released
I implement the same analysis as in Chapter 5.2.1 above, but constrain-
ing the study period to before the first release of Florackis et al. (2023)
on SSRN (January 2009 until October 2020) and then after the release
(November 2020 until December 2022).

Table A.4 presents the results using the period before the release. I
observe that the long-short portfolio has statistically significant positive
excess returns and alphas (significant at the 1% level). The outperfor-
mance of Portfolio 5 and the underperformance of Portfolio 1 is also more
substantial, with the long-short portfolio having an average monthly ex-
cess return of 0.94%. Portfolio 1 has statistically significant negative
alphas at the 1% level.

Table A.5 presents the results using the period after the release.
Portfolio 1 has a high average monthly excess return of 2.16%, signifi-
cant at the 5% level, and outperforms the other portfolios whose excess
returns are not statistically significant. The long-short portfolio has neg-
ative average excess returns of -1.49%, significant at the 5% level, and
statistically significant negative alphas when controlling for the mar-
ket, at the 1% level. Still, the alphas are not statistically significant
when controlling for the factors from Carhart (1997) or Fama and French
(2015).

There could be several explanations for these results. It could be
that the publication made some arbitrageurs trade stocks based on the
cyber risk measure, which results in lower returns post-publication, as
explained in McLean and Pontiff (2016).

It is also possible that because of cybersecurity events, high-risk firms
lost value while low-risk firms appreciated. For instance, T-Mobile was
a victim of a cyber attack in August 2021 during which more than 76.6
million current and former customers’ information had been accessed13.
Furthermore, the U.S Treasury Department published a report that as
of June 2021, financial institutions had already reported 635 suspicious
ransomware-related activities which constituted a 30% increase from all
reported activity in 202014. The report also found that the cost of ran-
somware payments increased. These events, in combination with others,
could explain why Portfolio 5 has low returns and the long-short portfo-
lio has negative returns. However, it is important to note that the study
sample after the publication is much smaller, and as a result the obser-
vations could be spurious.
13Available at: https://www.t-mobile.com/news/network/cyberattack-against-tmobile
14Available at: https://cyberscoop.com/ransomware-treasury-cryptocurrency

https://www.t-mobile.com/news/network/cyberattack-against-tmobile-and-our-customers
https://cyberscoop.com/ransomware-treasury-cryptocurrency-sanctions/


CHAPTER 5. RESULTS 29

5.3 Fama-Macbeth regressions
Table 5.4 presents the results of Fama-Macbeth regressions. Model 1
only includes the market factor. The coefficient on the market is not sig-
nificant and the average adjusted R-squared is small, showing that the
CAPM can not price the cyber beta-sorted portfolios. In model 2, I used
the cyber risk measure and as shown, the risk premium is statistically
significant and the average adjusted R-squared increases significantly.
Models 3, 4 and 5 control for other common factors, and the cyber risk
premium stays economically and statistically significant.

The economic interpretation of this table is that a one standard-
deviation increase in cyber risk increases returns by 0.18% per month.
This increase is statistically significant at the 10 or 5% level, even when
controlling for other common factors.

Dependent variable: Monthly Portfolio returns
(1) (2) (3) (4) (5)

Market -0.005 -0.025 0.065 0.024
[-0.064] [-0.429] [0.997] [0.275]

Cyber risk 0.183∗ 0.182∗∗ 0.183∗ 0.172∗∗

[1.794] [1.994] [1.913] [2.037]
HML 0.027 -0.012

[0.439] [-0.126]
SMB 0.069 0.049

[0.835] [0.536]
MOM 0.011

[0.153]
RMW -0.085

[-1.436]
CMA -0.088

[-0.816]
Constant 1.445∗∗∗ 1.465∗∗∗ 1.457∗∗∗ 1.455∗∗∗ 1.476∗∗∗

[5.311] [5.540] [5.493] [5.413] [5.450]
R2adj 0.007 0.134 0.186 0.258 0.284
MAPE 1.360 1.312 1.233 1.064 0.987

Table 5.4: Fama-MacBeth regressions

The betas are standardized before the second step regressions. HML and SMB refer
to the book-to-market and size factors from Fama and French (1992). MOM refers to
the momentum factor from Carhart (1997). CMA and RMW refer to the investment
and operating profitability factors from Fama and French (2015). R2adj is the average
adjusted R-squared and MAPE is the mean average pricing error. Newey-West (Newey
and West, 1994) t-statistics are reported in brackets. *, **, and *** indicate significance
at the 10%, 5% and 1% levels, respectively.
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Table A.6 presents the results of Fama-Macbeth regressions includ-
ing the Fama-French 12 industries (4 of them have to be dropped due to
collinearity). The cyber risk premium is reduced to 0.156% but is still
significant at the 10% level.

5.4 GRS test
I implement the GRS test as follows: I build 20 value-weighted portfolios
sorted on cyber risk, then compute the GRS test statistic using the five-
factor model from Fama and French (2015) and the same model plus
the cyber risk factor. I report the results then I repeat this procedure,
sorting the portfolios on market beta, firm size, and book-to-market ratio.

Table 5.5 presents the results. I observe that the GRS test statistic
is smaller for the model containing the cyber risk factor when sorting on
cyber risk, size and book-to-market. Interestingly, when sorting on firm
size and book-to-market, I can reject the null hypothesis that αi = 0 ∀i,
for the five-factor model but not for the model containing the cyber risk
factor. It is not the case when sorting on market beta, however, I can not
reject the null hypothesis for either model. In fact, I can not reject this
hypothesis for most tests reported in this table.

GRS p value R2 GRS p value R2

Sorted on cyber risk Sorted on market beta
FF5 1.211 0.253 0.869 0.712 0.802 0.783
FF5 + CyberFactor 0.947 0.530 0.886 0.825 0.680 0.801

Sorted on size Sorted on book-to-market
FF5 1.490 0.093 0.879 1.709 0.038 0.878
FF5 + CyberFactor 1.458 0.106 0.880 1.417 0.124 0.883

Table 5.5: GRS test statistics

R squared values are averaged over the 20 portfolios. FF5 refers to the five-factor model
from Fama and French (2015) and CyberFactor refers to the long-short portfolio from
Chapter 5.2.1.

These results suggest that a subset of factors could explain the cross-
section of returns.
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5.5 Bayesian factor model selection
Given the results of the GRS tests, a subset of factors could potentially
explain the cross-section of returns. The analysis explained in Chapter
4.2.3 allows us to determine the combination of factors that is best in
terms of pricing returns. Figure 5.4 presents the posterior probabili-
ties of the 5 most likely models, ranked at the end of the sample. All five
models contain the cyber risk factor and the model with the highest prob-
ability, of 21.18%, is the model containing the Market, book-to-market,
investment, operating profitability, and cyber risk factors.

Figure 5.4: Factor model posterior probabilities

The figure shows the posterior probabilities for the top 5 models, ranked at the end of
the sample. Mkt refers to the excess return of the market from the Kenneth French
data repository. HML and SMB refer to the book-to-market and size factors from Fama
and French (1992). CMA and RMW refer to the investment and operating profitability
factors from Fama and French (2015). CyberFactor refers to the long-short portfolio
from Chapter 5.2.1. Prior Multiple = 1.5

Figure 5.5 presents the cumulative factor probabilities, that is the
sum of probabilities of all models containing the factor. The cyber risk
factor has a cumulative probability of 91.66% at the end of the sample.
The investment and operating profitability factors also have very high
cumulative probabilities, unlike the remaining factors.

Finally, I study the sensitivity of the model probabilities to the prior
multiple. I repeat the analysis using three other values of prior multi-
ple: 1.25, 2 and 3 (similarly to Barillas and Shanken (2018)). Table 5.6
reports the posterior model probabilities at the end of the sample for the
top five models for each prior multiple. I observe that the top five models
are the same for each prior multiple. Furthermore, the book-to-market
factor is no longer in the most likely model for higher values of the prior
multiple.
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Figure 5.5: Cumulative posterior factor probabilities

Cumulative posterior probabilities are the sum of probabilities of all models containing
the factor. HML and SMB refer to the book-to-market and size factors from Fama and
French (1992). MOM refers to the momentum factor from Carhart (1997). CMA and
RMW refer to the investment and operating profitability factors from Fama and French
(2015). CyberFactor refers to the long-short portfolio from Chapter 5.2.1. Prior Multiple
= 1.5

5.6 Robustness tests
5.6.1 Long-run cyber risk
By design, the cyber risk computed in Chapter 4.1.4 depends only on
the most recent 10-K statement of each company. It could be possible
that a firm discusses cybersecurity concerns and risks extensively in its
10-K statement in year T , for example, because of an increasing num-
ber of cyberattacks in the industry, resulting in a high cyber risk score.
Having focused on cyber risk in year T and not having been attacked
itself, the firm could decide not to talk about cyber risks in its next 10-K
statements (in years T + i), or not as much as in year T , even though it
still has similar cyber risks. These cases would be missed by the previ-
ously computed cyber risk measure as it has no memory, and I would be
measuring shocks to cyber risk.

Using the cyber risk defined in Chapter 4.1.4, I compute the expand-
ing average cyber risk score in order to study the long-run cyber risk of
firms. That is the long-run cyber risk score in year T is the average of
its simple cyber risk scores from year 2008 to year T . This new measure
could account for the companies described above. The advantage of us-
ing the long-run average instead of the long-run maximum is that it does
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Prior Multiple 1.25 1.5 2 3
Mkt HML RMW CMA CyberFactor 19.40 21.18 21.31 18.79
Mkt RMW CMA CyberFactor 16.54 19.01 21.89 26.08
Mkt SMB HML RMW CMA 18.38 18.38 15.92 10.41
Mkt SMB RMW CMA CyberFactor 11.92 12.85 12.81 11.24
Mkt CMA CyberFactor 5.76 5.87 7.15 11.18

Table 5.6: Prior sensitivity of the posterior model probabilities

The table shows the posterior model probabilities (in percent) for the top 5 models
(ranked at the end of the sample) for different values of the prior multiple. The top
5 models are the same for every prior multiple. Mkt refers to the excess return of the
market from the Kenneth French data repository. HML and SMB refer to the book-
to-market and size factors from Fama and French (1992). CMA and RMW refer to the
investment and operating profitability factors from Fama and French (2015). CyberFac-
tor refers to the long-short portfolio from Chapter 5.2.1

not discard the observations. This is beneficial when considering firms
in the following situation: consider a firm that discusses cyber risks in
its 10-K statement in year T , following a cyberattack or data breach.
The firm might purchase protection (insurance, software,...) and hence
minimize its future cyber risk, and not discuss this risk in its future
10-K statements. The low cyber risk scores in the upcoming years are
representative of the reality of the firm and should not be discarded.

I repeat the portfolio sorts from Chapter 5.2 using the long-run cyber
risk to sort firms. Table A.7 presents the results. I observe no significant
change from Table 5.3 and the long-short portfolio remains significant
at the 5% or 10% level. These results could be an indication that firms
incorporate all available information in their newest 10-K statements re-
garding their cyber risk and hence incorporating information from past
statements does not improve the estimation of the cyber risk.

5.6.2 Controlling for cybersecurity firms
The cyber risk score constructed in Chapter 4.1.4 does not make a dis-
tinction between firms that discuss cybersecurity because they consider
it a risk and firms that are cybersecurity solutions providers, for exam-
ple, Fortinet15.

As there is no dedicated cybersecurity industry classification, I iden-
tify cybersecurity firms using the HACK ETF16. As explained in the
fund’s description, this ETF invests in companies providing cybersecu-
rity solutions that include hardware, software, and services. As cyber-
15Available at: https://www.fortinet.com/
16Available at: https://etfmg.com/funds/hack/

https://www.fortinet.com/
https://etfmg.com/funds/hack/
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security providers, these firms are expected to discuss cybersecurity in
their 10-K statements extensively, resulting in a false high cyber risk
score. Indeed, I observe that these firms have an average score of 0.59,
which is in the top 3% of cyber risk scores. I repeat the analysis from
Chapter 5.2 and I exclude the holdings of the HACK ETF from the uni-
verse of firms.

Table A.8 shows the results. The results for Portfolios 1, 2, and 3
are unchanged, and the excess returns and alphas of Portfolios 4 and 5
increase. Furthermore, I observe that the t-statistics on Portfolios 4 and
5 increase as well. These results support the view that it is the cyber risk
that is priced.
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Conclusion

In this thesis, I implement a doc2vec model to estimate firms’ cyber risk
based on their 10-K statements. I then use this cyber risk measure in
various asset pricing tests. The results support the view that cyber risk
is priced in the cross-section of firms. Indeed, a long-short strategy on
cyber risk sorted portfolios has a positive and statistically significant
alpha with respect to traditional factor models and an average monthly
excess return of 0.56%. I also perform this analysis limiting to the period
before and then after the first release of Florackis et al. (2023) on SSRN.
I find that while the long-short strategy has statistically significant ex-
cess return and alphas at the 1% level before the release, it has negative
average excess returns after. Furthermore, using Fama-Macbeth regres-
sions, I show that cyber risk has a significant risk premium. Using the
GRS test of Gibbons et al. (1989) and the methodology from Barillas and
Shanken (2018), I show that the cyber risk factor helps price stocks and
is present in the five most likely factor models. I also compute the long-
run cyber risk as the expanding average of the cyber risk. I perform
the portfolio sorts and observe that the results are very similar. Hence,
I conclude that firms incorporate all available information about cyber
risk in their newest 10-K statement. Finally, I exclude cybersecurity
firms from the sample and perform the portfolio sorts. I find that the
average monthly returns of the two high cyber risk portfolio increase,
and the others are left unchanged, supporting the view that the alpha is
due to the cyber risk.

Nevertheless, this paper has some limitations. First, using disclo-
sures implicitly relies on the firms’ willingness to disclose information
about their cyber risks. Even though there are no mandatory cyberse-
curity disclosure rules (but there might be soon, see the SEC’s press re-

35
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lease17), the SEC has had cybersecurity guidance since 201118, meaning
most firms already discuss cyber risks in their 10-K statements. With-
out a mandatory cyber risk section, however, the length and the location
of the cybersecurity information in the 10-K statements are inconsistent
from one statement to another. This issue is limited by the methodology
used in this paper. Indeed, I use the complete text from the 10-K state-
ments; hence even if the location of the cybersecurity texts is inconsis-
tent, I can identify them using the doc2vec methodology.

Next, the model itself can not distinguish between firms discussing
cybersecurity because they consider it a risk and firms that are cyber-
security solutions providers. However, the number of listed firms that
are purely cybersecurity providers is minimal, and as shown in chapter
5.6.2, excluding such firms only improves the results.

This research can be extended in two directions. First, the study can
be repeated for stock markets of different countries. Second, it is possi-
ble to estimate firms’ exposure to other risk factors using this machine
learning approach, for instance, legislative risk. These risks could be
readily captured, by changing the MITRE knowledgebase to one that is
close to the risk under scrutiny.

17Available at: https://www.sec.gov/news/press-release/2023-52
18Available at: https://www.sec.gov/divisions/corpfin/guidance/cfguidance-topic2.htm

https://www.sec.gov/news/press-release/2023-52
https://www.sec.gov/divisions/corpfin/guidance/cfguidance-topic2.htm
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Appendix

Method Vector Size Window Size Min Count Sub-Sampling Negative Sampling Epoch
DBOW 300 15 5 10−5 5 20

Table A.1: Baseline doc2vec parameters

The parameters of the baseline model are taken from Lau and Baldwin (2016). DBOW
stands for distributed bag-of-words.
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Score Preprocessed paragraph Ticker Tactic
0.593 currently available internet browsers allow users

modify browser settings remove cookies prevent
cookies stored hard drives however third persons
able penetrate network security gain access oth-
erwise misappropriate users personal information
subject liability liability include claims misuses
personal information unauthorized marketing pur-
poses unauthorized use credit cards

VSTY Defense Evasion

0.590 network security data recovery measures may ad-
equate protect computer viruses break ins similar
disruptions unauthorized tampering computer sys-
tems theft sabotage type security breach respect
proprietary confidential information electronically
stored including research clinical data material ad-
verse impact business operating results financial
condition

LXRX Collection

0.583 domain names derive value individual ability re-
member names therefore assurance domain name
lose value example users begin rely mechanisms
domain names access online resources government
regulation internet regulation increasing number
laws regulations pertaining internet

VSTY Credential Access

0.577 perceived actual unauthorized disclosure informa-
tion collect breach security harm business factors
beyond control cause interruptions operations may
adversely affect reputation marketplace business fi-
nancial condition results operations timely devel-
opment implementation continuous uninterrupted
performance hardware network applications inter-
net systems including may provided third parties
important facets delivery products services cus-
tomers

MDAS Credential Access

0.571 unauthorized parties may attempt copy aspects
products obtain use information regard proprietary
others may independently develop otherwise ac-
quire similar competing technologies methods de-
sign around patents cases rely trade secret laws
confidentiality agreements protect confidential pro-
prietary information processes technology

CSCD Collection

Table A.2: Top scoring paragraphs from the doc2vec validation
sample

The paragraphs are shown after preprocessing (as described in section 4.1.1). Tactic
refers to the MITRE tactic the paragraph is most similar to, as measured by cosine
similarity. The tickers of the 10 companies in the validation sample are CSCD, GTS,
LXRX, MDAS, PBY, PZZA, UMH, VALU, VSTY and VXRT.
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Score Preprocessed paragraph Ticker Tactic
0.570 possible cookies may become subject laws limit-

ing prohibiting use term cookies refers information
keyed specific server file pathway directory location
stored user hard drive possibly without user knowl-
edge used among things track demographic infor-
mation target advertising

VSTY Discovery

0.561 cannot certain advances computer capabilities dis-
coveries field cryptography developments result
compromise breach algorithms use protect con-
tent transactions website proprietary information
databases anyone able circumvent security mea-
sures misappropriate proprietary confidential cus-
tomer company information cause interruptions op-
erations

VSTY Impact

0.558 ordering delivery customers ready place order pro-
ceed shopping cart function directly checkout page
orders placed online website via toll free telephone
number customer service agents available take or-
ders customers access internet uncomfortable plac-
ing order online

VSTY Credential Access

0.557 process allows identify catalogue embryonic stem
cell clone dna sequence trapped gene select em-
bryonic stem cell clones dna sequence generation
knockout mice used gene trapping technology auto-
mated process create omnibank library frozen gene
knockout embryonic stem cell clones identified dna
sequence relational database

LXRX Persistence

0.556 believe systematic biology driven approach technol-
ogy platform makes possible provide substantial
advantages alternative approaches drug target dis-
covery particular believe comprehensive nature ap-
proach allows uncover potential drug targets within
context mammalian physiology might missed nar-
rowly focused efforts

LXRX Discovery

0.554 concerns security internet may reduce use website
impede growth significant barrier confidential com-
munications internet need security rely ssl encryp-
tion technology designed prevent customer credit
card data transaction process current credit card
practices merchant liable fraudulent credit card
transactions case transactions process merchant
obtain cardholder signature

VSTY Credential Access

Table A.2: Top scoring paragraphs from the doc2vec validation
sample (continued)
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Variable Description Source
Firm size (ln) ln(total assets [at]) Compustat
Firm Age (ln) ln(years) since the firm first appeared in Compustat Compustat
Book to market ratio Common equity [ceq] / market equity [prc*shrout] Compustat and CRSP
Tobin’s Q (Total assets - common equity + market equity) / total assets Compustat and CRSP
ROA Net income [ni] / total assets Compustat
Market Beta 5-year rolling market beta [beta] Compustat
Intangible/Assets Intangible assets [intan] / total assets Compustat
Debt/assets Total Debt / Total Assets [debt_assets] WRDS Financial Ratios
ROE Net Income / Book Equity [roe] WRDS Financial Ratios
Price/Earnings Stock Price / Earnings [pe_exi] WRDS Financial Ratios
Profit Margin Gross Profit / Sales [gpm] WRDS Financial Ratios
Asset Turnover Sales / Total Assets [at_turn] WRDS Financial Ratios
Cash Ratio (Cash + Short-term Investments) / Current Liabilities [cash_ratio] WRDS Financial Ratios
Sales/Invested Capital Sales per dollar of Invested Capital [sale_invcap] WRDS Financial Ratios
Capitalization Ratio Long-term Debt / (Long-term Debt + Equity) [capital_ratio] WRDS Financial Ratios
R&D/Sales R&D expenses / Sales [RD_SALE] WRDS Financial Ratios
ROCE Earnings Before Interest and Taxes / average Capital Employed [roce] WRDS Financial Ratios

Table A.3: Variable definitions

The names of the variables as found on CRSP and Compustat are in brackets.
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Value Weighted Portfolios
L H H-L
P1 P2 P3 P4 P5 P5-P1

A. Portfolios sorted by cyber risk
Average excess return 0.70∗∗ 0.97∗∗∗ 1.10∗∗∗ 1.23∗∗∗ 1.64∗∗∗ 0.94∗∗∗

[2.41] [3.58] [3.69] [5.76] [5.76] [3.23]
CAPM alpha -0.52∗∗∗ -0.20 -0.14 0.06 0.51∗∗ 1.03∗∗∗

[-3.11] [-1.50] [-1.07] [0.95] [2.40] [2.95]
FFC alpha -0.28∗∗∗ -0.06 0.00 -0.03 0.27∗ 0.55∗∗∗

[-3.58] [-0.73] [0.01] [-0.52] [1.91] [2.83]
FF5 alpha -0.26∗∗∗ -0.08 0.03 -0.06 0.30∗ 0.56∗∗∗

[-3.45] [-0.88] [0.36] [-0.95] [1.90] [3.01]

B. Characteristics
Number of firms 600.4 599.9 599.9 599.9 600.2 -
Cyber risk 0.490 0.504 0.515 0.529 0.570 -

Table A.4: Average monthly excess returns and alphas (in per-
cent) before the first release of Florackis et al. on SSRN

FFC refers to the four-factor model from Carhart (1997) and FF5 refers to the five-factor
model from Fama and French (2015). Panel B shows the average number of firms in each
portfolio and the average cyber risk of the portfolios. Newey-West (Newey and West,
1994) t-statistics are reported in brackets. *, **, and *** indicate significance at the
10%, 5% and 1% levels, respectively. Period: January 2009–October 2020 (before the
first release of Florackis et al. (2023) on SSRN)
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Value Weighted Portfolios
L H H-L
P1 P2 P3 P4 P5 P5-P1

A. Portfolios sorted by cyber risk
Average excess return 2.16∗∗ 1.56 1.34 1.55 0.67 -1.49∗∗

[2.18] [1.64] [0.97] [1.19] [0.44] [-2.11]
CAPM alpha 1.34∗∗∗ 0.71∗∗∗ 0.34 0.54∗∗∗ -0.40∗ -1.74∗∗∗

[4.37] [2.91] [1.15] [3.44] [-1.67] [-3.35]
FFC alpha 0.57∗ 0.19 -0.07 0.54∗∗∗ 0.17 -0.39

[1.76] [0.71] [-0.37] [3.10] [0.61] [-0.67]
FF5 alpha 0.34 -0.15 -0.15 0.65∗∗∗ 0.11 -0.23

[0.89] [-0.53] [-0.74] [3.63] [0.38] [-0.34]

B. Characteristics
Number of firms 695.5 695.0 694.9 695.0 695.2 -
Cyber risk 0.504 0.523 0.536 0.550 0.582 -

Table A.5: Average monthly excess returns and alphas (in per-
cent) after the first release of Florackis et al. on SSRN

FFC refers to the four-factor model from Carhart (1997) and FF5 refers to the five-factor
model from Fama and French (2015). Panel B shows the average number of firms in each
portfolio and the average cyber risk of the portfolios. Newey-West (Newey and West,
1994) t-statistics are reported in brackets. *, **, and *** indicate significance at the
10%, 5% and 1% levels, respectively. Period: November 2020–December 2022 (after the
first release of Florackis et al. (2023) on SSRN)
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Dependent variable: Monthly Portfolio returns
(6)

Cyber risk 0.156∗

[1.951]
HML -0.116

[-1.236]
SMB 0.200

[0.951]
RMW 0.062

[0.753]
CMA -0.173

[-0.925]

Consumer Durables -0.013
[-0.212]

Manufacturing -0.094
[-1.261]

Energy 0.059
[0.645]

Chemicals 0.062
[0.909]

Telecommunications -0.162∗∗

[-2.19]
Retail 0.139

[1.272]
Healthcare -0.003

[-0.046]
Finance -0.019

[-0.211]
Constant 1.329∗∗∗

[4.081]
R2adj 0.307
MAPE 0.636

Table A.6: Fama-MacBeth regressions with industries

The betas are standardized before the second step regressions. HML and SMB refer to
the book-to-market and size factors from Fama and French (1992). CMA and RMW re-
fer to the investment and operating profitability factors from Fama and French (2015).
The industries correspond to the 12 Fama-French industries, obtained from the Ken-
neth French data repository. The “Business Equipment”, “Consumer NonDurables”,
“Other”,and “Utilities” industries are dropped due to high colinearity with the other in-
dustries and factors (as measured by the Variance Inflation Factor). R2adj is the average
adjusted R-squared and MAPE is the mean average pricing error. Newey-West (Newey
and West, 1994) t-statistics are reported in brackets. *, **, and *** indicate significance
at the 10%, 5% and 1% levels, respectively.
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Value Weighted Portfolios
L H H-L
P1 P2 P3 P4 P5 P5-P1

A. Portfolios sorted by the long-run cyber risk
Average excess return 0.86∗∗∗ 1.13∗∗∗ 1.14∗∗∗ 1.18∗∗∗ 1.45∗∗∗ 0.60∗

[3.00] [3.94] [3.93] [4.35] [4.23] [1.70]
CAPM alpha -0.26 -0.01 -0.03 0.11∗ 0.31 0.57

[-1.05] [-0.04] [-0.27] [1.71] [1.52] [1.33]
FFC alpha -0.17 0.007 0.05 0.10 0.23∗ 0.40∗∗

[-1.56] [0.67] [0.75] [1.24] [1.83] [2.01]
FF5 alpha -0.17∗ 0.03 -0.01 0.06 0.25∗ 0.43∗∗

[-1.80] [0.34] [-0.16] [0.93] [1.94] [2.28]

B. Characteristics
Number of firms 615.7 615.1 615.1 615.1 615.5 -
Long-run cyber risk 0.490 0.501 0.511 0.524 0.567 -

Table A.7: Average monthly excess returns and alphas (in per-
cent) using the long-run cyber risk

The portfolios are sorted using the long-run cyber risk. FFC refers to the four-factor
model from Carhart (1997) and FF5 refers to the five-factor model from Fama and
French (2015). Panel B shows the average number of firms in each portfolio and the
portfolio’s average long-run cyber risk. Newey-West (Newey and West, 1994) t-statistics
are reported in brackets. *, **, and *** indicate significance at the 10%, 5% and 1%
levels, respectively. Period: January 2009-December 2022
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Value Weighted Portfolios
L H H-L
P1 P2 P3 P4 P5 P5-P1

A. Portfolios sorted by cyber risk
Average excess return 0.88∗∗∗ 1.02∗∗∗ 1.13∗∗∗ 1.22∗∗∗ 1.45∗∗∗ 0.57∗

[3.19] [3.86] [3.71] [4.73] [4.18] [1.74]
CAPM alpha -0.22 -0.07 -0.05 0.08 0.33 0.55

[-0.94] [-0.44] [-0.39] [1.38] [1.67] [1.34]
FFC alpha -0.14 -0.02 0.03 0.05 0.25∗∗ 0.39∗

[-1.18] [-0.19] [0.34] [0.81] [2.027] [1.91]
FF5 alpha -0.16 -0.08 0.03 0.06 0.26∗∗ 0.41∗∗

[-1.61] [-0.93] [0.35] [0.72] [1.97] [2.26]

B. Characteristics
Number of firms 611.9 611.3 611.3 612.3 611.7 -
Cyber risk 0.493 0.507 0.518 0.532 0.571 -

Table A.8: Average monthly excess returns and alphas (in per-
cent), cyber firms dropped

Cybersecurity firms are dropped from the sample. FFC refers to the four-factor model
from Carhart (1997), and FF5 refers to the five-factor model from Fama and French
(2015). Panel B shows the average number of firms in each portfolio and the average cy-
ber risk of the portfolios. Newey-West (Newey and West, 1994) t-statistics are reported in
brackets. *, **, and *** indicate significance at the 10%, 5% and 1% levels, respectively.
Period: January 2009-December 2022
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