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Abstract

Value-at-risk (VaR) is an important risk measure now widely used by

financial institutions and regulators to quantify market risk and compute

regulatory capital charge. The performance of VaR model can be examined

by back-testing. Based on back-testing information, this paper develops a

Machine Learning model to classify market risk VaR exceptions into “market

move” and “VaR model issue” by SVM classifier. TSNE data visualization

algorithm is used to study the separability of the two categories. Model

parameters are selected by cross validation, and good prediction results are

achieved.

Besides classification, we propose a numerical method to approximate

VaR model predicted P&L and prove an asymptotic convergence property.

The P&L attribution is studied by Lasso regression which selects the most

significant components in a portfolio.
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1 Introduction

Value-at-risk (VaR) is a widely-used risk measure to quantify market risk of port-
folios and to compute regulatory capital charge by financial institutions. Under a
time horizon T and a given probability ↵ (typically ↵ = 1%, 5%), the ↵ VaR is
defined as the minimum value that negative loss can reach during the time horizon
[0, T ] with probability 1�↵. The VaR model needs to capture the risk of portfolios
as accurately as possible, so that the value-at-risk predicted by model aligns with
actual profit and loss (P&L). This is to be examined by back-testing, which often
look into occurrences of VaR exceptions.

A VaR exception happens when the P&L of that day exceeds the daily VaR.
The frequency and magnitude of VaR exceptions are important indicators to eval-
uate the performance of a VaR model. Kupiec[1995] proposed one of the ear-
liest backtests for testing whether the frequency of VaR exceptions is close to
(↵). Kupiec[1995] constructed test statistics with a VaR exception ‘hit’ sequence,
[It+1(↵)]Tt=1, where It+1(↵) is defined as the indicator of whether the actual P&L
on day t+ 1 exceeds the VaR predicted on day t.

It+1(↵) := I (P&Lt+1  V aRt(↵))

Christo↵ersen[1998] then built the theoretical framework for back-testing by in-
troducing two properties of exception sequence to test the accuracy of VaR model:
unconditional coverage and independence, tested respectively by a likelihood
ratio test and a Markov contingency table test. Combining the two properties, the
exception sequence It(↵) is also compared to a Bernoulli distribution B(↵) to test
its unconditional coverage and independence properties.

All the tests above focus on a single ↵�quantile. By considering multiple-level
quantiles we are able to obtain more information about the accuracy of VaR
model accross its entire probability support. The mathematical foundation for
distributional tests was given by Rosenblatt[1952]: Given a sequence of ex post
clean P&L {clnPLt+1}Tt=1 and ex ante P&L distribution functions {Dt}Tt=1 given
by a VaR model, define the transformation clnPVt = Dt(clnPLt+1). If the ex
ante distribution captures all risk factors of portfolio, then the distribution of
clnPLt+1 is exactly Dt. As a direct application of Rosenblatt[1952], the clean
p-value sequence {clnPVt+1}Tt=1 are independently distributed uniform. In risk
management terms, a VaR model backtests perfectly, we can reasonably assume
the P&L process predictive distribution aligns with the actual distribution of that
P&L process. Diebold et al.[1997] suggested tests on the clean p-value series with
density graphs. The shape of the p-value histograms reveals information about
the overstatement or understatement of the VaR model. Berkowitz[2001] applies
inverse transform of Gaussian cumulative distribution function to a clean p-value
sequence: zt+1 = ��1(clnPVt+1). Under the null hypothesis, the transformed
quantile {zt+1}Tt=1 is independent standard Gaussian, on which Berkowitz[2001]
constructs likelihood ratio tests, as Gaussian likelihood ratio tests have better
properties, such as uniformly most powerfulness, compared to distributional tests
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on uniformly distributed sequence. There exist numerous other kinds of back-
testing methodologies for VaR model. Campbell[2005] summarizes these back-
testing methods and concludes that tests on several quantiles are most successful
in identifying inaccurate VaR models when the risk is systematically under re-
ported.

Once the back-testing has highlighted an inaccuracy, it is important for the bank to
identify the root cause. In case of a VaR exception event, market risk teams often
label the event into di↵erent categories for more e�cient risk reporting. Based on
back-testing multi-level quantiles, this paper will explore further the classification
power of the p-values. Building on the idea from distributional back-testing, we will
specify a classification model that combines the daily actual P&L and VaR model
predicted P&L. We also implement a P&L attribution which is able to detect the
negative P&L driver in case of an exception. This is achieved by Lasso regression
that is powerful for feature selection. Both statistical and numerical methods are
applied. For the numerical method, a convergence result is also proved in this
paper.

Before proceeding to the data modeling, we apply the t-distributed Stochastic
Neighbour Embedding(tSNE) algorithm to visualize the data. TSNE is a powerful
and recent dimension reducing technique by van der Maaten and Hinton[2008]. It
maps high-dimensional features into low-dimensional spaces (2D or 3D) by project-
ing original inter similarities onto low-dimensional space, so that the data points
can be visualized. Our visualisation helps up justifying that the exception cate-
gories are separable, yet with some overlapping points on 2D plane.

Support Vector Machine (SVM) divides the kernel-mapped feature space by hy-
perplanes. It was initially proposed to deal with binary classification problem by
Cortes and Vapnik[1995]. In our classification problem, the available categorical
data points overlap visually on 2D plane, that’s why a kernel is needed to map the
original features into new feature space so that SVM can separate di↵erent cate-
gorical data points. The kernel we use in this paper is the radial basis function
(RBF) kernel, of which the parameters are chosen based on 10-fold cross valida-
tion. Cross validation is proposed by Kohavi[1995] to select optimal parameters
while reducing the cost of overfitting.

Finally in order to attribute portfolio P&L, we will apply a Lasso regression by
fitting portfolio P&L in function of its component P&Ls. Introduced system-
atically by Tibshirani[1994], Lasso regression refers to a linear regression with
L1�penalized least square. The L1�penalization on linear coe�cients is able to
achieve variable selection and shrinkage at the same time. Coe�cients before the
least important variables first shrinks to zero while increasing the L1�penalization
constant. The significance hierarchy component P&Ls will be sorted by Lasso re-
gression, then we can attribute the exception drivers with this hierarchy and the
P&L magnitudes.

The remainder of this paper is organized as follows:

Section 2 gives a brief introduction to our risk model and basic definitions in
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risk management: value-at-risk and p-values. Then section 3 presents the machine
learning algorithms and strategies used in this paper: tSNE, SVM, cross validation
and Lasso. Section 4 is a summary of visualisation and classification methodology.
Section 5 introduces the implied p-value approach with a result on asymptotic
convergence. Section 6 outlines how to attribute P&L to its component portfolios
by Lasso regression. Finally section 7 summarizes the paper and outlook future
developments of this topic.

2 Risk Model and P-values

This section introduces some basic definitions used in risk management, as well as
the p-value methodology to determine a P&L exception. First of all it is important
to understand the basic classification criteria of VaR exception by p-values, since
all the machine learning algorithms we will subsequently use will utilise p-values
as features.

2.1 P&L-based Risk Model

Let Xt+1 denote vector of daily portfolio returns between the end of day t and
the end of day t + 1, and �t the risk captured by a value-at-risk model at the
beginning of day t + 13. Then according to the VaR model, daily P&L between
the end of day t and the end of day t+ 1 equals the product of risk and return.

varPLt+1 = �t ·Xt+1 (1)

At the end of day t + 1, one can observe the realized clean P&L(which excludes
the intraday trades and is as defined by the Basel Committee), denoted by clnPL.
Compared with VaR-predicted P&L, the clean P&L may contain a part that is
not explained by the VaR model, denoted as unxPL. Then the clean P&L can be
decomposed in the following way:

clnPLt+1 = �t ·Xt+1 + unxPLt+1 (2)

In order to calculate VaR of date t, a predictive model(namely the VaR model)
calculates a risk-synchronised P&L according to some distribution Dt. As an
example, historical VaR models use historical returns back to T days and the
computable risk of day t:

Dt = {�tXt, �tXt�1, ..., �tXt�T} (3)

Also note that on day t the return of day (t + 1) Xt+1 is not yet available. One
needs to wait until the end of day t+ 1 to observe this daily return.

3Here we assume the VaR model is sensitivity-based
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2.2 Value-at-risk and P-values

Given a confidence level 1�↵ (typically ↵ = 1% or 5%), as well as a time horizon
interval [t, t+ h], the value-at-risk V aRt+h

t (↵) is defined as the minimum negative
value that the accumulated loss could reach between time [t, t+h] with a probabil-
ity 1�↵. If the P&L between [t, t+h] is continuously distributed, then V aRt+h

t (↵)
is the ↵�quantile of the cumulative distribution function.

Definition 2.1. Between time interval [t, t+h], the VaR of a portfolio P&L PLt+h

t

at confidence level 1 � ↵ 2 (0, 1) is the minimum negative value y such that the
PLt+h

t
could reach with probability (1� ↵):

VaRt+h

t
(↵) := sup{y : P(PLt+h

t
 y)  ↵} (4)

We define the clean P&L p-value as the value implied from VaR model cumulative
probability function of the occurrence of a loss of magnitude clnPLt+1:

clnPVt+1 = Dt(clnPLt+1) (5)

Similarly the VaR P&L p-value is defined as:

varPVt+1 = Dt(varPLt+1) (6)

A good property of p-values is that the VaRt+1
t

(↵) is contained in the distribution,
so that we can directly determine if a P&L exception event happens by comparing
the p-value with ↵. The p-value space ranges from 0 to 1, therefore the P&Ls
are ‘normalized’ automatically when projected onto the p-value spaces. The auto-
normalization will be very helpful for statistical learning when all the features
range in [0, 1]. For example, when ↵ = 5%, we will know there is a VaR exception
on day (t+ 1) if clnPVt+1  5%, as this is equivalent to clnPLt+1  VaRt+1

t
(5%).

The VaR-predicted p-value of day t+1 is essentially determined by the risk-return
�tXt+1 projected into historical risk-return sequence {�tXt,�tXt�1, ...,�tXt�T}.
However we are not able to obtain Xt+1 at the beginning of day t + 1, as Xt+1

is not contained in available distribution Dt. Moreover, the risk vector �t may
evolve as a function of t, so on a forward date (t + k), the historical vector P&L
of day (t + 1) �t+kXt+1, is likely to evolve as k moves forward. We then define
k�forward vector p-value.

Definition 2.2. The k�forward vector p-value of day t+1 is the p-value calculated
by the kth element �t+kXt+1 in Dt+k against Dt+k, the distribution of day t+ k:

PV (k)
t+1 = Dt+k(�t+kXt+1) (7)

Generally speaking, there are various possible drivers for a clean P&L VaR excep-
tion: A downside market movements that drives the P&L downward the value-at-
risk, or risk factors driving a loss but which are not captured by the VaR model.
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We label them as “Market Move” and “Model Issues” respectively. The first loss
arises from an ‘expected’ market move, where the VaR captures the unfavourable
risk factor in one of dimensions in the risk vector �t. In this case both the varPL
and clnPL moves are excessively below the value-at-risk. The second category
of loss arises from out-of-model risk factors that negatively impact the portfolio
value. In this case, the unexplained P&L is relatively high, and varPL doesn’t
have an exception, whereas clean P&L is actually below the value-at-risk.

On p-value spaces, we can define a simple decision criterion to classify a “Market
Move” and a “Model Issue”:

I(Market move on day t+ 1) = I(clnPVt+1  ↵, varPVt+1  ↵) (8)

I(Model issue on day t+ 1) = I(clnPVt+1  ↵, varPVt+1 > ↵) (9)

However even we have simple classification criteria, the VaR model is not able to
compute the varPLt+1, because the distribution Dt only contains returns prior to
day t+1, thus we do not know the value �t ·Xt+1. This limitation leads us to the
extensions: We will use forward p-values as an approximation to VaR-predicted
P&L, with an introduction of Machine Learning models that are trained from
historical exception data and then classifies exception category based on clnPV
and forward p-values.

2.3 P-values as Model Features

For the vector p-value PV (k)
t+1, moving k forward from 1 to K, we obtain a K-

dimensional forward p-value vector {PV (k)
t+1}Kk=1. We will then use it as approxi-

mation of VaR-predicted p-value. More detailed explanation why we choose this
approximation can be found in section 4.1. Using both clnPVt+1 and {PV (k)

t+1}Kk=1,
and historically classified VaR exception data, we hope to train a model that au-
tomates the classification, as well as attributing the exception to the components
of P&L.

Figure (1) is the parallel coordinate plot for average p-values of all real exception
data points. P-values of market moves exceptions are on average much lower
than model issues exceptions, which aligns with our p-value classification criterion.
This suggests that using vector p-values as approximation to the VaR p-value is a
plausible methodology to distinguish market moves from model issues.

Figure 1: Parallel coordinates plot of average vector p-values between two cate-
gories

5



To summarize, in order to classify a VaR exception happening on day t+1, we wait
for K days forward until we have collected the complete K-dimensional forward p-
values. The chosen features include clnPVt+1, {PV (k)

t+1}Kk=1 and ↵. We pick the VaR-
level ↵ as a feature because when the training data contains non-exception samples,
the trained model should be able to distinguish exceptions and non-exceptions
according to clnPV and ↵’ value. In this paper, we will only concentrate on binary
classifiers rather than considering non-exception samples. We hope the model to
be specialized in telling ‘Market Move’ from ‘Model Issues’, while non-exception
samples can be distinguished by setting a hard boundary I(clnPVt+1 > ↵). But
for potential generalization clnPV and ↵ are still used as features.

Figure (2) presents the cumulative distribution curve of clean p-value and 5-
forward p-values in a simulated portfolio.

Formally, we simulate VaR predicted P&L and unexplained P&L by two indepen-
dent Gaussian distribution.

varPLt+1 ⇠ N(0, 1), unxPLt+1 ⇠ N(0, 1),

varPLt+1 and unxPLt+1 are independent, 8t 2 [1, 500]

Then clnPLt+1 = varPLt+1 + unxPLt+1 ⇠ N(0,
p
2)

When the risk profile {�t+k} is stable (in 1-dimensional case this was simulated by
using an invariant sign for�), the forward p-values perfectly coincides with varPV
for any date t, since the risk profile is reduced in the projection with only Xt+1

a↵ecting the p-value. In the chart the forward p-values are uniformly distributed,
because {Xt+1, 8t 2 [1, 500]} is a set of i.i.d. Gaussian random numbers. The
Gaussian unexplained P&L in clean P&L drives the CDF of clean P&L to move
out of uniform distribution range. In this case, the distribution vectors tend to
underestimate the VaR. In general the VaR model is only globally appropriate
when the clean p-value follows an uniform distribution.

Figure 2: P-value chart in the case of a simulated portfolio: Gaussian clean P&L
and Gaussian unexplained P&L
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3 Machine Learning Algorithms Introduction

In this section, we summarize the machine learning tools and algorithms used in
exception classification. In each subsection, we will briefly outline their mathe-
matical basis and selected optimization algorithms.

3.1 T-distributed Stochastic Neighbor Embedding

T-distributed Neighbor Embedding is a powerful non-linear visualization tech-
nique. It maps high-dimensional data onto a low-dimensional space(2D or 3D)
while keeping the original similarity structure. Proposed by van der Maaten and
Hinton[2008], it outperforms most other visualization techniques on various prob-
lems.

If we denote the original high-dimensional data points by X = {xi}ni=1, the tSNE
algorithm is essentially a map Y = tSNE(X ), where Y is the set mapped data
points in low-dimensional space. The tSNE minimizes the similarity error between
Y and X , so that Y keeps the same point-wise similarity as X .

In the high-dimensional space, the similarity of two data points is quantified using
a Gaussian probability. Specifically, a similarity of xj given xi is defined as the
conditional probability that the point xi will pick xj as its neighbor:

pj|i =
exp(� ||xj�xi||2

2�2
i

)
P

k 6=i
exp(� ||xk�xi||2

2�2
i

)
(10)

where �i is the Gaussian variance centered at xi. For each point xi, the correspond-
ing variance �i is found by a binary search so that �i produces the probability
distribution Pi = {pj|i, j 6= i} with a user-fixed perplexity:

Perp(Pi) = 2H(Pi)

where H(Pi) is the entropy of Pi

H(Pi) = �
X

j 6=i

pj|i log2 pj|i

The joint similarity of X is featured by the set of pairwise similarities, defined as

pij =
pj|i + pi|j

2n

In the low-dimensional space, Student t-distribution is used. The law centered at
yi is assumed to follow a t-distribution with degree of freedom 1. The pairwise
similarity between points in Y is then defined as

qij =
(1 + ||yi � yj||2)�1

P
k 6=l

(1 + ||yk � yl||2)�1
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The tSNE uses Kullback-Leibler divergence between the joint probability P and
Q:

C = KL(P ||Q) =
X

i,j

pij log
pij
qij

where the variables to optimize are the low-dimensional points Y . The tSNE then
applies a momentum-accelerated gradient descent to obtain a minimum Y :

Y(t) = Y(t�1) � ⌘
�C

�y
+ ↵(t)(Y(t�1) � Y (t�2))

where the gradient equals

�C

�y
= 4

X

j

(pij � qij)(yi � yj)(1 + ||yi � yj||2)�1 (11)

The tSNE is a very powerful tool to visualize the data on a 2D plane without
losing the similarity property of the original data. However, tSNE uses the whole
datasets, and it is not capable of predicting out-of-sample points once the visual-
ization is finalized. One can also add the out-of-sample new exception data point
into the dataset, and re-run tSNE, then conduct the classification on embedded
2D dataset. The initialization of Y is from a Gaussian N(0, 10�4Id), so each visu-
alization produces di↵erent results. This reduces the prediction reliability of using
tSNE as a classifier. Therefore, tSNE is used here only as a reference to visualize
the exceptions and test tentative models on embedded data.

3.2 K-nearest Neighbors

K-nearest Neighbors(KNN) is a simple non-parametric algorithm that constructs
its decision function purely on input training data. Trained on labelled set of
data points, the KNN classifier assigns a label to a new incoming data point x by
looking at the majority of labels in its k nearest neighbors {nbi(x)}ki=1 from training
set. The distance is defined in the high-dimensional feature space. Alternatively
the ‘majority voting’ can be weighted by assigning each neighbor a weight !i =

C

dist(x,nbi(x))
, where C is the constant that insures

kP
i=1

!i = 1.

The model parameter k can be selected by cross validation, which will be intro-
duced in following sections.

3.3 RBF Kernel Support Vector Machine

Support vector machine (SVM) is a supervised learning algorithm used for classi-
fication and regression. The idea behind SVM is to separate the data space by a
hyperplane. Generally the raw feature space X is transformed into a new features
space Z by a map ' : Rd ! Rk:

Z = '(X )
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before entered as features into the SVM, in which Z is the linear feature space.
When ' is the identity map in space Rd, the kernel SVM is reduced to linear
SVM, which applies when the label variable have a linear dependency with original
features. In more general cases when the data points in original space Rd have
no linear representation, then a non-linear mapping ' transforms the data into
new features, in the hope that in projected space Rk the data points are linearly
separable.

Given a labelled dataset {(xi, yi) : xi 2 Rd, yi 2 {�1, 1}, 8i 2 {1, 2, ..., n}}, the
SVM aims at estimating the hyperplane parameters ! 2 Rd, b 2 R, such that the
hyperplane

H = {x 2 Rd : !T · '(x) + b = 0}
separates the data points by their labels.

The ideal case is when all points labelled by y = 1 and by y = �1 fall in di↵erent
sides of the hyperplane. When the points of two labels overlap in space Rk, “slack
variables” si are introduced to train a hyperplane that distinguish most points.
The mathematics of the SVM problem can be formalized as the following:

8
>><

>>:

min
!,b

1
2 ||!||

2 + C
nP

i=1
si

s.t. yi(!T · '(xi) + b) � 1� si, , 8i 2 {1, 2, ..., n}
si � 0, 8i 2 {1, 2, ..., n}

From Lagrangian multiplier method and Karush-Kuhn-Tucker(KKT) conditions(Kuhn
and Tucker[1951], Karush[1939]), it can be shown that the constraint optimization
problem is equivalent to the following unconstraint optimization problem:

min
!,b

1

2
||!||2 + C

nX

i=1

⇥
1� yi(!

T · '(xi) + b)
⇤2
+

(12)

which can be solved by a gradient-descent approach.

In practice, we do not need to solve explicitly the mapping '. Instead a kernel
function K(x, x0) = '(x)T · '(x0) is introduced to measure the pairwise similarity
of data points. In this paper, the radial basis function kernel is used:

K(x, x0) = exp(��||x� x0||2) (13)

With the kernel function, one can write the dual problem
8
>>>><

>>>>:

max
↵

nP
i=1

↵i � 1
2

P
i,j

↵i↵jyiyjK(xi, xj)

s.t. 0  ↵i  C, 8i 2 {1, 2, ..., n}
nP

i=1
↵iyi = 0

and when the parameter ↵ in the dual problem is solved, the predicted label of
point x 2 Rd is directly computed by the kernel and ↵

SVM(x) =
nX

j=1

↵jyjK(x, xj) + b

9



where b is available from any support vector xi, such that in the original space we
have yi(!T · '(xi) + b) = 1:

b = yi �
nX

j=1

↵jyjK(xi, xj)

RBF kernel SVM is powerful when the categories depend non-linearly on features,
and can achieve much higher classification performance than the linear classifiers
such as Perceptrons. In this paper we will use principally RBF kernel SVM as the
classifier, and seek the model parameters which achieves optimal prediction power
by cross validation.

3.4 Cross Validation

When several models are eligible to be applied on a prediction problem, it is
necessary to define a methodology that assesses their predictive ability so that
one can select an optimal model. Cross validation is suitable for model selection
problems.

Cross validation is an out-of-sample testing methodology used to assess the perfor-
mance of a statistical model when applied to an independent dataset. Generally
a predictive model is evaluated by testing its ability to predict new data that are
not used in training the model. The whole dataset is split into training set and
testing set, while the model parameters are learned from the training set, and is
then tested on testing set. The principle of cross validation is to repeat this split
multiple times and test the overall performance of di↵erent testing datasets. On
each testing set an accuracy score is given to the model, and the model’s overall
performance of predicting unseen data is evaluated by aggregating the scores.

The cross validation method used in this paper is k�fold cross validation. The
original sample is randomly partitioned into k equal size subsets, where the k � 1
subsets are used to train the model, and the remaining one subset is used as testing
dataset. The training-testing process is then repeated k times, with each of the k
subsets used only once as testing data. The eventual score is the average of scores
on the k subsets.

In our case we need to select optimal SVM parameters C and �, where C is the
penality for slack variables, and � is the scale parameter in the RBF function. We
will apply 10-fold cross validation with di↵erent sets of parameters (C, �) to select
optimal parameters.
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3.5 Lasso Regression

Lasso solves the linear regression problem y = X�+✏, where � 2 Rp by minimizing
the least square sum plus a L1�regularization term.

min
�

||y �X�||2 + ↵
pX

j=1

|�j| (14)

The L1 regularization can set coe�cients to 0, because the problem is equivalent
to minimizing min

�

||y �X�||2 with constraints ||�||1  t. This constraint forms a

hypercube in Rp space, so the minimum is more likely to be achieved at edges of
the hypercube, where some coordinate components are zero.

Lasso regression is very useful for feature selection while controlling the magnitude
of parameters(shrinkage). In the following sections, we will see its application in
P&L attribution.

4 VaR Exception Classification

In section 2 we have introduced the mathematical formulation of our risk model.
We have chosen a VaR model which estimates the value-at-risk based on the his-
tory of returns. Specifically on day t, the model assumes the following distribution
vector Dt = �t · {Xt, Xt�1, ..., Xt�T}. In the distribution vector Dt we have prod-
uct of risk �t and historical returns Xt back to Xt�T . An observed downward
market move Xt+1 on day t + 1 will fall on tail among the historical return vec-
tors {Xt, Xt�1, ..., Xt�T}. When Xt+1 falls in the ‘normal’ range of distributional
returns, the ‘market factors’ in the risk model do not strike any unfavourable
moves.If an exception happens nonetheless, we can a�rm that there are some
unknown risks not in the VaR model that drive the exception.

The VaR-predicted P&L varPLt+1 = �t ·Xt+1 is mapped into Dt to compute the
VaR p-value varPVt+1 = Dt(�tXt+1). Comparing varPVt+1 with ↵, we will know
whether the exception is captured by risk model and thus driven by downward
market move reflected by Xt+1, or whether there is a model deficiency driving the
exception.

4.1 Risk Variation and Forward Vector P-values

The varPV is an important factor for our classification. However it can be cum-
bersome to compute. When it is not available, we seek to approximate it by using
only the information from distribution of di↵erent dates forward. Note that the
return Xt+1 is plugged into the distribution Dt+k when k � 1. It is essentially the
kth element of in the vector Dt+k:

Dt+k = {�t+k ·Xt+k, ...,�t+k · Xt+1, ...,�t+k ·Xt+k�T}
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We can actually plug its kth element in the same distribution of day (t+k) to define

a k�day forward vector p-value, PV (k)
t+1 = Dt+k(�t+k ·Xt+1). The information of

return Xt+1 is contained in PV (k)
t+1, in spite of a di↵erent risk profile �t+k. When

k is small (k  5), we expect PV (k)
t+1 to be close with varPVt+1, as the risk profile

of t + k, �t+k, is likely to align with that of day t + 1, �t+1 in a relatively small
time range of few days. An invariant risk profile case is demonstrated in figure (2),
where � is uni-dimensional, and �t doesn’t change sign. In this case, all forward
vector p-values match exactly with true VaR p-value.

However sometimes the e↵ect of risk variation cannot be neglected. We observe
sometimes large standard deviation among {PV (k)

t+1, k = 1, ..., K} for a date t +
1, indicating significant di↵erences between {�t+k, k = 1, ..., K}, so it is really
unsure which k to choose to approximate the true varPV . Figure (3) presents an
extreme case where significant risk changes are observed in the VaR risk model.
For example, there are downside noises that drive the 2�forward and 5�forward
p-value curves above the ideal back-testing line y = x.

Figure 3: Clean p-value with noise and forward p-values with significantly unstable
intra-day risk

Instead of replacing varPV by forward p-values, we approach the problem by
building a statistical model that implicitly estimates the varPV using all the
forward p-values’ information. The model should categorize an exception when
the clean p-value, K�forward p-values and the confidence level ↵ is given. In
practice, here is our strategy: On t + 1 we know the clnPVt+1 by which we can
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conclude if day t + 1 has an exception. Then we wait until date t +K to collect
all the forward p-values {PV (k)

t+1, k = 1, ..., K}. With these p-values known on K
days later, we will classify date (t+1)’s exception into “Market Move” and “Model
Issues”.

To conclude, we need to build a machine learning model featuring p-values based
on the fact that:

• The actual varPLt+1 may not be available, therefore forward p-values PV (k)
t+1

are calculated to simulate the varPVt+1.

• For di↵erent k(1  k  K), the risk variation among {�t+k, k = 1, ..., K}
brings discrepancy among forward p-values, therefore we need to make use
of implicit patterns in risk variation, which can be taken into account by a
machine learning model.

4.2 Data Visualisation

The dimension of features is K+2. Before plugging these features into our model,
we hope to get sense of how much the exception data aligns with our classification
criteria (8) and (9). The idea is to reduce the dimensionality of features, and plot
the data on a reduced dimension space. If there exist some structural di↵erences
between di↵erent exception classes, they are expected to be observed as points
clustered in separated positions in 2D or 3D space. This can be achieved either
by Principle Component Analysis(PCA), a linear dimension reduction technique,
or by non-linear mapping. Here t-distributed Stochastic Neighbor Embedding is
used and it achieved good visualisation results.

Figure (4) and (5) jointly illustrate how tSNE can distinguish di↵erent excep-
tion classes of a simulated portfolio daily P&L data. The original features are
(clnPV, PV (1), PV (2), PV (3), PV (4), ..., PV (K),↵). The simulated portfolio con-
tains 5000 days’ P&L data with their p-value empirical CDFs plotted in figure
(4), therefore we have about [↵(5000 � K)] ⇡ 500 data points with complete K
forward p-values that can be used for training a classification model. The empir-
ical CDF curves shows that the 1�forward and 4�forward p-values share similar
risk profile while 2�forward and 5�forward p-values share similar risk profile of
the opposite side. The 3�forward p-value correspond with true varPV along the
theoretical uniform cumulative distribution function line. The clean P&L con-
tains a Gaussian unexplained P&L, so the clean p-value CDF curve also deviates
from the CDF of uniform distribution. The tSNE with perplexity= 40 embeds
the exception data points with original features onto the 2D plane. The embed-
ded 2-dimensional coordinates keeps pointwise similarity structure of the original
features. After visualization, a simple linear Perceptron classifier is tested featur-
ing the two embedded dimensions. A Perceptron is a binary classifier in a neural
network. It has similar decision function as linear SVM, but applies an online
learning algorithm that updates parameters every time each sample is inserted
into the model. The visualization result and Perceptron decision area are plot-
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ted and colored in the scatter plot of figure (4), where the color of each points
represents its true exception category.

Figure 4: P-value CDF chart and TSNE visulization on simulated p-values, with
linear Perceptron classifier

The linear Perceptron fits 92.88% accuracy on exceptions with embedded features.
From figure (4), we can confirm that on a simulated dataset the p-values structure
allows for a classifier to distinguish between ’Market Move’ and ’Model Issue’,
since samples belonging to di↵erent categories are clustered in di↵erent positions,
despite the overlapped points near the Perceptron classification boundary that
causes confusion in Perceptron classification result. These overlapped points are
due to noise in clean P&L that drives p-values of di↵erent categories to have
similar structure. Figure (5) tells us more details abut how the tSNE method
clusters the sample exception points with respect to mean and standard deviation
of the forward p-values.

Figure 5: TSNE visulization on simulated p-values, colored by standard deviation
and mean of forward p-values

Standard deviation of forward p-values represents the scale of daily risk profile
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change. The scatter points shapes like a band on the 2D plane. In figure (5),
points with low forward p-value standard deviation are likely to be clustered on
the center of the band, while higher standard deviation features the points at
the side of the band. The mean of forward p-values indicates the possible true
category of an exception. Low average value is likely to indicate a market move,
while higher value suggests a model deficiency. The average of forward p-values
follows an increasing trend from left to the right. This corresponds well with true
category colors in figure (5). In conclusion, the results in figure (5) illustrate that
tSNE has e↵ectively clustered the exceptions by clustering nearby similar points.

We then fit the simulated data by an exploratory RBF kernel SVM model, to
demonstrate its classification performance. We set the regularization parameter
C = 100 in (12), and � = 1

K+2 in the kernel (13). Sampling 80% of the 464 data
points as training dataset, the SVM model achieves AUC(area under ROC curve)
of 99% on the remaining 20% testing datase, as is shown in figure (6).

Figure 6: RBF kernel SVM model tested on simulated dataset, training size = 0.8

The confusion matrix on all data samples are included in figure (7). This confusion
matrix reveals information about the overall performance of a classifier, where we
are able to know the numbers of true-positives, false-positives, true-negatives and
false-negatives. Meanwhile, the p-value scatter plots depicts the model’s corre-
spondence with the exact decision criteria in (8) and (9), if the 1�forward p-value
equals the true varPV . Here the shallow grey area represents ‘Market Move’ area if
the horizontal axis were true varPV , with the deep grey representing ‘Model Issue’
area. In this case, the 1� forward p-value doesn’t deviate significantly against true
varPV , and the RBF kernel SVM is able to reproduce the true decision criteria
on an artificially simulated dataset.

15



Figure 7: Left: RBF kernel SVM model confusion matrix on all sample points;
Right: scatter plot of clean p-value v.s. 1�forward p-value

Finally we present in figure (8) the visualization results of two real datasets of VaR
exceptions, respectively 99%-VaR and 95%-VaR. The market moves and model
issues are clustered at di↵erent regions on the plane, in spite of several overlapping
points. There are clear visual boundaries between the two clusters. These results
further validates in addition to the parallel coordinates plot in figure (1) that the
market moves and model issues are inherently distinguishable according to their
vector p-values.

Figure 8: Left: 99%-VaR exceptions visualization result; Right: 95%-VaR excep-
tions visualization result;

4.3 Selection of Model Parameters by Cross Validation

In practice, we have exception data points from various portfolios, whose p-values
are all available for the models to fit. We would like to choose among candidate
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models or parameters to achieve overall optimality as well as reducing overfitting.

For the given dataset, there might be several plausible models for classification. It
is therefore important to select an optimal classifier for the proceeding analysis.
Even for one specific classifier, di↵erent model parameters might lead to di↵erent
performance of the model. 10-fold cross validation is used to select the optimal
number of neighbors in KNN and the parameters C, � in the kernel SVM. The
whole dataset is divided randomly into 10 folds. At each time one fold is used
as testing dataset, to test the model trained on the aggregation of remaining 9
folds. We calculate the average of the 10 accuracy scores on 10 testing folds, and
the optimal model or optimal parameters can be selected by the highest average
accuracy score.

Figure 9: Cross validation results of KNN classifier

Figure 10: Cross validation results of RBF kernel SVM classifier

Both the KNN and SVM achieve optimal accuracy at around 74%. From figure
(9) and figure (10) the optimal choice of nearest number for KNN is k = 12, while
for SVM model, the optimal parameters are C = 100, � = 10.
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We can thus infer that the KNN and SVM are able to reduce overfitting by cross
validation. Their mutually close accuracy score indicates consistently good per-
formance. However KNN is strongly dependent on training data, as its decision
function picks neighbors solely in training set. It doesn’t learn any parameters as
SVM does and the computation cost is high as the distances to all training sam-
ples are calculated. In conclusion, we will apply RBF kernel SVM with optimal
parameters from cross validation for proceeding classification.

4.4 Classification by RBF Kernel SVM

Previous sections demonstrate the methodologies and some results on simulated
dataset. We present the classification result using the optimal cross-validated
parameters trained on real exceptions dataset. The real exception dataset consists
of both 95% and 99% VaR exceptions of di↵erent portfolios. First we re-split the
data into 60% training and 40% testing set, and output the confusion matrices and
the ROC curves of the models on the testing dataset. These outputs compare the
SVM model with optimal cross-validation parameters and the SVM model with
default parameters. The optimal parameter admits lower false positive and false
negative rates, which indicates that the optimal parameter successfully reduces
overfitting e↵ects.

Predicted Market Move Predicted Model Issue
Observed Market Move 246 51
Observed Model Issue 68 93

Table 1: Confusion matrix: SVM trained with optimal parameters (C=10, � = 10)

Predicted Market Move Predicted Model Issue
Observed Market Move 242 65
Observed Model Issue 72 79

Table 2: Confusion matrix: SVM trained with default parameters (C=1, � =
‘auto0)
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Figure 11: ROC curves of models by optimal and default parameters

Finally we train the SVM with optimal parameters on the whole dataset, and we
obtain a ROC curve with area under curve being 0.90.

Figure 12: ROC curves of models by optimal parameters, trained on whole dataset

To better understand how the model performs on real exception data, we plot the
classification confusion matrix and the scatter plot on all 99% VaR exceptions.
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High accuracy rate is achieved by the model. Moreover from the scatter plot with
x�axis being the first vector p-value, the model successfully predicts the exception
points which do not obey exactly our p-value criterion. There is no clear boundary
between predicted market moves and model issues, which indicates that the real
datasets are for portfolios where the risk profile significantly changes. This can
be directly observed from that many exception points have distinct values among
their 5 vector p-values. However, our trained model has learned su�ciently from
the risk change patterns, and when a new exception happens with some similar
pattern as one in training dataset, the model could identify it and assign it into a
category that follows the similar risk-changing pattern.

Figure 13: Prediction results on 99%-VaR exceptions

In order to further justify that the model is able to reproduce the exact classi-
fication criterion when the VaR p-value equals exactly all the 5 vector p-values,
we validate the model on a simulated dataset containing over 2300 99%-exception
samples with known simulated VaR p-values. All the samples have constant risk
profile, so that their p-values equals their vector p-values. The scatter plot with
coloured prediction results is shown in figure (14). We can see the vertical bound-
ary between market moves and model issues. Although the boundary is not exactly
1% but around 6%, the exceptions are categorized according to a VaR p-value
threshold. The di↵erence might be due to a tolerance interval of the VaR p-value,
in that when a VaR p-value is relatively low but above the VaR level, we still tend
to classify it into market move. In conclusion, the SVM model is e↵ective and we
can use it for future predictions.
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Figure 14: Prediction results on 99%-VaR exceptions

5 Alternative Approximation to VaR p-value: Nu-
merical Implied P-values

Previously we explore the prediction power of SVM model featuring the forward
vector p-values, this methodology is e�cient as long as the VaR model generates
a distribution vector in a daily basis, since vector p-values provide a good approx-
imation to the VaR p-value. In this section, we will study a di↵erent approach to
approximate the VaR p-value: implied VaR p-value method. The implied p-value
is still in theoretical development, and this section will cover the idea and a basic
convergence result.

5.1 Motivation

A perfect VaR risk model would generate a distribution vector that includes all
the risk factors driving clean P&L. In this case, the clean P&L equals exactly the
VaR P&L, and the unexplained P&L is 0. Recall the definitions of clean P&L and
clean p-value in (2) and (5), if (unxPLt+1 = 0, 8t), then the clean p-value would
only be dependent on the random variable return Xt+1 plugged into the i.i.d.
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random variables Xt, Xt�1, ..., Xt�T . Therefore, the clean p-value from a perfect
VaR risk model should admit a uniform distribution, with the clean p-value CDF
chart matching the uniform distribution CDF in figure (2). But in practice, the
VaR risk model can be imperfect, and non-zero unexplained P&L causes the clean
p-value CDF to deviate from the ideal straight line. The implied p-value method
adjusts the clean p-value to match the ideal back-testing CDF to an implied p-
value series, so that the implied p-value series passes the uniform distribution test,
and also keeps high correlation with clean p-value series. The implied p-value
impPVt+1 is an approximation to the varPVt+1 adjusted from the clean p-value.
It also aims at fitting the unexplained P&L that minimizes the ‘ideal v.s. fitted’
VaR P&L error.

The problem is formulated as below:

For a given (clean p-value, distribution) sequence {(clnPVt+1, Dt), t 2 T }, find a
new p-value sequence impPV = {impPVt+1, t 2 T }, such that impPV follows a
uniform distribution, and (impPVt+1) is positively correlated to (clnPVt+1).

From the formulation, one can write impPVt+1 as a function of (t, clnPVt+1). Then
the implied unexplained P&L can also be written as a function of (t, clnPVt+1),
and we can express the implied unexplained P&L by a conditional expectation, as
analogy to Dupire’s local volatility:

unxPLimp(t+ 1, clnPVt+1) = Et[unxPLtrue(t+ 1)|clnPVt+1]

= clnPLt+1 �D�1
t
(impPVt+1)

To summarize, the implied p-value needs to have two main properties:

• {impPVt+1, 8t} should pass the uniform distribution test, admitting an ideal
back-testing chart.

• {impPVt+1, 8t} and {clnPVt+1, 8t} are ‘highly correlated’.

5.2 Algorithm

The complete implied p-value series (impPVt1 , impPVt2 , ..., impPVtn) is bootstrapped
from a pre-defined ordered uniform random series

(u1, u2, ..., uM)

and the available clean p-value series

(clnPVt1 , clnPVt2 , ..., clnPVtn)

The algorithm consists of n iterations where each iteration solves for one implied
p-value.

1. Set the length M of the initial uniform random series. Then generate the
random sequence (u1, u2, ..., uM).
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2. Begin iterations from 1 to n. In iteration m, let (P̂ V i, i = 1, 2, ...,M + 1)
denote the ordered sequence consisting of previous (m�1) calculated implied
p-values

impPVt1 , ..., impPVtm�1

and (M �m+ 1) random variables

um, ..., uM

as well as x, the new impPVtm to calculate. Then in iteration m, solve the
optimization problem with the L2-error between (P̂ V i, i = 1, 2, ...,M + 1)
and uniform quantiles (k�0.5

M+1 , k = 1, ...,M + 1), plus a L2-penalization of
(x� clnPVtm)

2;

impPVtm = argmin
x2[0,1]

M+1X

i=1

✓
P̂ V i �

i� 0.5

M + 1

◆2

+ �(x� clnPVtm)
2 (15)

� is the historical penalization constant. it penalizes the deviation of implied p-
value from corresponding clean p-value. Large � makes implied p-value closer to
clean p-value, and a small � will admit implied p-value series more like uniform
distribution.

5.3 Numerical Examples

A simulated example on implied p-value is presented in figure (15). The green
curve is the implied p-value empirical CDF, and its back-testing result is close to
that of true VaR p-value, compared to the clean p-value. A comparison in daily
basis between implied and VaR p-value is shown in figure (16). In this simulation
case, the clean-implied correlation is above 90%, and we see from figure (16) that
the implied P&L aligns with the VaR P&L with correlation= 0.56, at least the
implied P&L captures the downside and upside peaks of the VaR P&L.

Figure 15: Back-testing chart of implied p-value and clean p-value
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Figure 16: Time series plot of VaR p-value and implied p-value

Another simulation example features two cases, where the clean P&L experiences
considerable shock due to large out-of-risk-model factors’ movements. In figure
(17), the risk out of model drives an important loss, while in figure (18), in-
creased volatility is observed during the shock period. We apply the implied
p-value approach on clean p-value series, then calculate unexplained P&L by
unxPLimp

t+1 = clnPLt+1 � D�1
t (impPVt+1) and compare it with true unexplained

P&L. These results demonstrate that implied p-value method is able to capture
large downside movements and sudden risk volatility variations in unexplained
P&L.

Figure 17: Unexplained P&L: large downside movement

Figure 18: Unexplained P&L: large volatility change
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Implied p-value approach also applies to P&L attribution, when the parent port-
folio’s clean P&L is decomposed to several component portfolios’ clean P&L. In
this example, the parent portfolio ⇧ consists of portfolios A and B. We assume
the risk model captures all the risk of A, but B has a large part of unexplained
P&L missed by the model. More precisely we write:

XA ⇠ N(0, 1), XB ⇠ N(0, 1), ✏B ⇠ N(0, 3)

clnPL⇧ = clnPLA + clnPLB

clnPLA = XA

clnPLB = XB + ✏B

First bootstrap implied p-value from ⇧’s clean p-value and plot unxPLimp

⇧ against
unxPLreal

A
+ unxPLreal

B
, we can see that the scatter points are situated alongside

the straight line, which reveals the compatibility of implied P&L attribution with
the unexplained P&Ls.

Figure 19: Scatter plot: portfolio ⇧’s implied unexplained P&L against sum of
components real unexplained P&L

Figure 20: Time series: implied unexplained P&L of ⇧, A and B
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Next we apply the implied p-value approach to A and B, then plot the time series
of implied unexplained P&L in figure (20). The downside movements of unxPLimp

⇧

and unxPLimp

B
coincide, especially when the movements have a large magnitude.

Therefore we can conclude that implied p-value approach explains portfolio ⇧’s
unexplained P&L comes mainly from B’s unexplained P&L.

The implied p-value approach has demonstrated its e�ciency on simple simulated
examples. It uses only a few assumptions in the risk model, and the implied p-
values are bootstrapped solely from clean p-values, which is simple to implement,
as long as the clean p-value series and daily distributions are available. The the-
oretical properties of implied p-value are still in research, and we will prove a
convergence result in next subsection.

5.4 Convergence

Since implied p-values approximate the real VaR p-values and they are boot-
strapped from a M -length uniform random sequence, one would like to ask when
using two di↵erent uniform random series initially, how close the two implied p-
value sequences will be. The materiality of the implied p-values will be validated if
they converge to a unique p-value series at a reasonable computation complexity,
when M ! 1. We will see later that the converged p-value sequence are likely to
be no other than the clean p-values. We first define the asymptotic property.

Definition 5.1 (l2-consistency). Let C be a clean p-value series of fixed length n.

u(1)
M

and u(2)
M

are two initial uniform random series of length M , where u(1)
M

and u(2)
M

are generated independently. X(1)
M

and X(2)
M

are 2 implied p-value bootstrapped

from C initialized respectively by u(1)
M

and u(2)
M

with penalization constant �. Then
the implied p-value algorithm is consistent, if there exists a function f�(M), such
that

lim
M!1

f�(M) = 0

and

El2

���X(1)
M

�X(2)
M

���
2
�
 f�(M)V ar(u(1)

M
� u(2)

M
)

We demonstrate the convergence property by reasoning: When M increases to
very large values, the random initializer uM becomes denser in interval [0, 1]. In
the objective function (15) the first term will have less impact on its value as
the sorted P̂ V i, i = 1, ...,M + 1 is ‘close’ to i�0.5

M+1 , i = 1, ...,M + 1. In this case, to
minimize the objective the second term �(x� clnPVtm) is more important, and x
is more likely to be close to clnPVtm . Therefore the implied p-value series tends
to converge to the clean p-value series.

Two numerical examples are shown in figure (21), with l2-error between implied
and clean p-value sequences against the functions f�(M) = 1

log(M)2 and f�(M) =
1
M
. As f�(M) approaches 0, we observe that the l2-error tends to 0 as well.
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Figure 21: l2-error between implied/clean p-value against 1
log(M) and

1p
M

We state the following proposition on the convergence property of implied p-values.

Proposition 5.1 (l2-convergence to clean p-values). Let C be a clean p-value
series of fixed length n. uM is an uniform random series of length M . XM is the
implied p-value bootstrapped from C initialized by uM with penalization constant
�. Then there exists a function f�(M), such that

lim
M!1

f�(M) = 0

and
El2

⇥
|XM � C|2

⇤
 f�(M)

The randomized property of the initializer uM brings about much complexity, we
will begin by a special case, where uM is fixed as discrete uniform sequence on [0, 1].

Proposition 5.2. Assumptions are the same with proposition 5.1, and uM is fixed
as

uM(i) =
i� 0.5

M
, 8i 2 {1, 2, ...,M}

Then the implied p-value sequence converges to clean p-values with f�(M) = Cn
M2 ,

where Cn is a constant in function of the p-values length n.

Proof. Since the length of clean p-values is fixed by n, it su�ces to prove conver-
gence of the first implied p-value

impPVt1 ����!
M!1

clnPVt1

and the convergence for the rest of implied p-values follows.

In the objective function (15), let i1 be the index such that:

i1 � 0.5

M + 1
 clnPVt1 <

i1 + 0.5

M + 1
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then we have

M · clnPVt1 � 0.5 < i1  (M + 1) · clnPVt1 + 0.5

Assume the interval for x:

uM(ix) =
ix � 0.5

M
 x <

ix + 0.5

M
= uM(ix + 1)

we can write the objective function g(x):

g(x) =
M+1X

i=1

✓
P̂ V i �

i� 0.5

M + 1

◆2

+ �(x� clnPVt1)
2

=
ixX

i=1

✓
i� 0.5

M
� i� 0.5

M + 1

◆2

+ (x� ix + 0.5

M + 1
)2 +

MX

j=ix+1

✓
j � 0.5

M
� j + 0.5

M + 1

◆2

+ �(x� clnPVt1)
2

=
ixX

i=1

(i� 0.5)2

(M(M + 1))2
+ (x� ix + 0.5

M + 1
)2 +

MX

j=ix+1

(M + 0.5� j)2

(M(M + 1))2
+ �(x� clnPVt1)

2

=

ixP
j=1

(j � 0.5)2 +
M�ixP
j=1

(j � 0.5)2

M2(M + 1)2
+ (x� ix + 0.5

M + 1
)2 + �(x� clnPVt1)

2

= G(ix) + (x� ix + 0.5

M + 1
)2 + �(x� clnPVt1)

2

Then we estimate that G(ix) has the order O( 1
M
). As

[M2 ]X

j=1

(j � 0.5)2 
ixX

j=1

(j � 0.5)2 +
M�ixX

j=1

(j � 0.5)2  2
MX

j=1

(j � 0.5)2

Then
[M2 ]P
j=1

(j � 0.5)2

M2(M + 1)2
 G(ix)  2

MP
j=1

(j � 0.5)2

M2(M + 1)2

By the square sum formula, we obtain that G(ix) ⇠ O( 1
M
). As for g(x), if x is

restricted on [ ix�0.5
M

, ix+0.5
M

], then the minimum is achieved on the following values:

x⇤ =
ix+0.5
M+1 + �clnPVt1

1 + �
,
ix � 0.5

M
, or

ix + 0.5

M

depending on the position of x⇤ and the interval. At x⇤, the objective value is

g(x⇤) = G(ix) +


�+

�2

(1 + �)2

�✓
clnPVt1 �

ix + 0.5

M + 1

◆2
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where G(ix) can be considered as a constant in the same order as O( 1
M
). Then

the minimum of g is achieved when ix = i1 or ix = i1 � 1, in which clnPVt1 and
x⇤ are closest, thus minimizing the error. Then let’s assume ix = i1, then

x⇤ =
i1+0.5
M+1 + �clnPVt1

1 + �
2 [

i1 � 0.5

M + 1
,
i1 + 0.5

M + 1
)

Then x⇤ is a global minimum for the objective function g on [0, 1]. Therefore

impPVt1 =
i1+0.5
M+1 + �clnPVt1

1 + �

Using the restrictions on i1 based on clnPVt1 , we finally have

clnPVt1 +
0.5� clnPVt1

(1 + �)(M + 1)
< impPVt1  clnPVt1 +

1.5

(1 + �)(M + 1)

Then |clnPVt1 � impPVt1 | ⇠ O( 1
M
).

Since clean p-value sequence has a limited length n, using the same reasoning
above, we will finally have

||impPV � clnPV ||2
l2
⇠ O(

1

M2
)

The proposition 5.1 involves uniform random initial sequence uM , which still re-
quires a rigorous proof for convergence. But given the numerical results and ob-
servation, we believe that the proposition 5.1 holds, and impPV converges finally
to clnPV in l2 as the length of initializer tends to 1.

To summarize, the implied p-value method provides a numerical perspective on
observed clean p-values. The implied p-value converges eventually to the clean
p-value, instead of VaR p-value. So the e↵ect of implied p-value is similar to
allowing a random adjustment on clean p-value for it to be uniformly distributed.
We can also use the bootstrapped implied p-value to classify VaR exceptions, in
which case we do not use any prediction models.

6 P&L Attribution by Lasso Regression

When a VaR exception occurs, it is important to understand the root cause. A first
step in doing so, is the analysis of the portfolio’s P&L attribution to its compo-
nents. Lasso regression is a useful tool to select most important P&L contributors
based on historical data. The learned contributors can provide a confidence level
for the P&L attribution when an exception happens. Suppose that the portfolio
⇧0 consists of n sub-portfolios ⇧1, ...,⇧n, which yields

clnPL⇧0
t =

nX

i=1

clnPL⇧i
t + clnPLres

t
(16)
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clnPLres

t
is the residual P&L (if the clean P&L of parent portfolios may di↵er

from the sum of its components’ P&L). Then their VaR P&L and unexplained
P&L should also follow the equations, when we use the same risk model for all
portfolios:

varPL⇧0
t =

nX

i=1

varPL⇧i
t (17)

unxPL⇧0
t =

nX

i=1

unxPL⇧i
t + unxPLres

t
(18)

The varPL is based on estimated varPV , which can either be approximated by
taking the average of forward vector p-values, or by bootstrapping directly implied
p-values of ⇧0 impPV ⇧0 , and then plugging this implied p-value into joint vector
distributions of component portfolios to select the marginal p-values. Concretely
for the implied approach, in the joint distribution vectors

(vecPL⇧0
t , vecPL⇧1

t , ..., vecPL⇧n
t
), 8t

Find the t0 such that P&L⇧0
t0

yields the closest value to impPV ⇧0 . Then the
components’ marginal implied p-values are computed using {P&L⇧i

t0
, i � 1}

The training data includes all historical clean P&L vectors with ⇧0 and its n
sub-portfolios.

(clnPL⇧0
t , clnPL⇧1

t , ..., clnPL⇧n
t
), 8t

6.1 Coe�cient Path from Lasso Regression

In a Lasso regression as we are trying to select the most relevant portfolios, we do
not restrict coe�cients to be 1 as in equation (16). Our regression cost function
is the following:

min
�

||clnPL⇧0 �
nX

i=1

clnPL⇧i · �i||2 + ↵
nX

j=1

|�j| (19)

As ↵ increases from 0, more �i tends to be 0. We plot the path graph in which
the value evolution of each feature is represented by a curve. Figure (22) is an
example of Lasso regression applied on a simulated portfolio’s clnPL. The path
graph shows how the feature coe�cients evolve as the regularization parameter
↵ changes. When ↵ remains at a lower level (< 107), all the sub-portfolios have
coe�cients to be 1, which matches the unitary sum equation in (16). But as ↵
grows, more coe�cient curves drop to 0, and remaining non-zero coe�cients belong
to the most relevant contributor sub-portfolios.

We also run Lasso on estimated varPL and unxPL respectively so that the VaR
P&L and unexplained P&L are also attributed to their contributors.
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Figure 22: Lasso coe�cients path on a simulated portfolio

6.2 Variance Attribution

Lasso regression provides helpful insights into the importance hierarchy of sub-
portfolios. We can further quantify this hierarchy by linear regression re-fitting
stepwise the sub-portfolios.

Suppose we denote ⇧(1) to ⇧(n) the sorted sub-portfolios by their vanishing order
in Lasso regression, where ⇧(1) is the last sub-portfolio whose coe�cient vanishes
as ↵ increases. Then we describe the attribution process by a for-loop as below.

For i = 1 to n :

• Fit clnPL⇧0 in function of (clnPL⇧(1)
, ..., clnPL⇧(i)

) by linear regression.

ˆclnPL⇧0 = LinearRegression(clnPL⇧(1)
, ..., clnPL⇧(i)

)

• Compute the residual vector ˆ✏(i) = clnPL⇧0 � ˆclnPL⇧0

• The score is defined by the residual variance divided by the variance of total
portfolio ⇧0

s(i) =
var(✏(i))

var(clnPL⇧0)

Therefore 1�s(i) is the R2 score on parent portfolio ⇧0 explained by sub-portfolios
(⇧(1), ...,⇧(i)). The bar plot of scores reveals information on quantified contribution
from each sub-portfolios sorted by Lasso regression hierarchy. With s(0) = 1, s(i)�
s(i+1), i � 0 represents the residual variance reduction e↵ect with the introduction
of portfolio ⇧(i+1).
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Figure 23: Variance scores sorted according to Lasso hierarchy of sub-portfolios

This analysis is based on a global scope where the model is fitted by historical
P&L data frame. It provides useful references for sample-wise VaR exception
P&L attribution. One day when a VaR exception happens in portfolio ⇧0, we can
attribute varPL⇧0 and unxPL⇧0 by equations (17) and (18). They are attributed
in a single daily basis, where the varPLs are estimated for this single day. The
global statistical attribution analysis reveals more empirical information on how
consistent the exception day’s P&L attribution aligns with respect to historical
attribution.

7 Conclusion

In this report, we have presented applications of machine learning to classify VaR
exceptions. Along with an introduction to the VaR risk model framework, we have
visualized p-values data by tSNE and then built a RBF kernel SVM model whose
parameters are obtained through cross validation. The prediction power of SVM
is validated by the fact that it reproduces the exact classification rule on ideally
simulated dataset. Aside from learning from p-values data, the implied p-value
method is proposed to numerically bootstrap approximated VaR p-values. We
have proved the convergence result in a special case for this method. We have
further attributed P&L by Lasso regression, which provides statistical insights for
exceptions’ P&L attribution.

In the end, we list potential topics for further research:

• Multi-category classification model: Currently we have market move and
model issues as the only two categories, but more categories can be added.
For instance improper usage of a proxy time series is also a source of excep-
tions. This would involve more features and more complicated models.
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• Direct approximation on the VaR P&L: Regression models could be used to
fit directly the VaR P&L, in which case the exact category would be available
and one would not need a classification model based on p-values.

• Completion of theoretical framework for implied p-value method: We proved
the asymptotic convergence of implied p-values to clean p-values in a special
case, where initial uniform series is fixed. In more general case with random-
ized initializer, we believe in the same convergence but still need to develop
a proof for proposition 5.1.
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