
Deep learning approach to hedging

Candidate Number: 1023650

University of Oxford

A thesis submitted in partial fulfillment of the MSc in

Mathematical and Computational Finance

June 21, 2018

Acknowledgements

I would like to express my sincere gratitude to my supervisor for his guidance

and encouragement at all stages of this thesis.

A very special appreciation is due to my family for their understanding, patience

and support.

Abstract

The principal aim of this thesis is to investigate the potential of state-of-the-

art deep learning techniques applied in the context of hedging. We confirm an

ability of a neural network algorithm to not only replicate theoretical hedging

parameters but also to design strategies that are optimal in the light of var-

ious criteria. We investigate conjectured flexibility of the approach and find

limitations that arise with increasing diversity of underlying processes. Finally,

the algorithm is used as a financial engineering tool for the problem of hedging

under the presence of transaction costs.

Contents

1 Introduction 1

2 Theoretical prerequisites 3

2.1 Setting: Discrete time market . 3

2.2 Convex risk measures . 4

2.3 Neural networks . 6

2.4 Numerical approximations of hedging strategies 8

3 Black - Scholes model 10

3.1 Theoretical results . 10

3.2 Benchmark: discretized Black-Scholes model 11

3.3 Robustness of the Black-Scholes formula . 15

4 Robustness of the neural network hedge 18

4.1 Models . 18

4.1.1 Heston model . 18

4.1.2 Bates model . 19

4.1.3 Variance Gamma with CIR stochastic clock 20

4.2 Calibrated parameters . 20

4.3 Numerical results: robustness . 21

4.4 Discussion . 25

5 Markets with frictions 27

5.1 Leland model . 27

5.2 The Utility Based Hedging . 28

5.3 Theoretical benchmarks . 29

5.4 Numerical results . 30

i

6 Conclusion 33

6.1 Conclusion . 33

6.2 Further research . 33

Bibliography 35

Appendicies 36

A Calibrated market paths 37

B Python code 38

B.1 Packages inclusions and basic functions definitions 38

B.2 Construction and training of the basic RNN 38

B.3 Crucial parts of the extended RNN constructing code (after pretraining) . . 40

ii

Chapter 1

Introduction

As presented by Black and Scholes [5], the price of a contingent claim is equal to the small-

est amount of capital needed to hedge this claim. In financial literature this is known as

pricing-hedging duality which gave a momentum both to the finance industry and research

in mathematical finance. However, the involved and in sense unpredictable nature of any

financial market makes it challenging to develop a consistent hedging theory for incomplete

or markets with frictions. For example, one of the basic assumptions of the vast majority of

proposed models is that the underlying dynamics of prices are fixed and known. This leads

to a strong dependence of both the price and hedging parameters on the chosen model.

In this setting any hedging strategy, which is implemented on the real data is prone to

multiple errors that may emerge from the various assumed simplifications. Even though

the impact of mis-calibrated model parameters or simplifying assumptions can be to some

extent measured and appropriately dealt with, it is tremendously difficult to quantify the

wrong choice of a model in the first place.

In order to address these problems, and as a part of the post 2008 crisis aftermath, ro-

bust methods grew in popularity. In order to hedge a given position a trader is looking for

the cheapest model independent superhedge - a trading strategy that does not necessarily

replicate the payoff of a contingent claim, but whose future time value is greater than the

one of the risky position.

Another difficulty arising in the context of theoretical modelling of hedging is the presence

of market frictions such as transaction costs or liquidity constraints. Multiple attempts

have been made to propose mathematically tractable models. These efforts were initiated

by Leland [15] in 1985. His idea, discussed in greater detail later in this thesis, was based

on an attempt to modify the idea of delta-hedging of Black and Scholes under the presence

of small transaction costs and regular rebalancing. Howard, Whalley and Willmott [10]

1

extended this idea to arbitrary option portfolio and showed that the value of such portfolio

is the solution to a modified nonlinear version of the Black-Scholes PDE. Davis, Panas and

Zariphopoulou [7] laid theoretical foundations for the utility based approach to hedging

which were later extended by Whalley and Whillmot [17] who proposed an easy to imple-

ment and asymptotically optimal strategy of no-transaction region. All of these methods

suffer, however, from strong assumptions on the underlying dynamics.

In this paper we attempt to address these deficiencies by use of state-of-art deep learn-

ing techniques. The application of deep neural networks to the problem of hedging was

proposed in [6] where authors lay down theoretical foundations and provide compelling ex-

amples for the effectiveness of the algorithm. As the proposed method is model independent

we consider the algorithm to be a potentially effective robust tool.

The thesis is structured as follows. First we expand upon the structure of the model

and justify its properties. Then we use the Black Scholes model setting as a benchmark for

the algorithm. Next, in Chapter 4 we fit out model to a diverse set of paths calibrated to

the same market in order to get insight into the conjectured robustness. Then, in the last

chapter, we apply the algorithm in a setting with transaction costs and present its ability

as a financial engineering tool.

2

Chapter 2

Theoretical prerequisites

2.1 Setting: Discrete time market

In this paper we consider a discrete-time financial market with horizon T and trading dates

0 = t0 < t1 < · · · < tn = T . We fix a probability space Ω and denote by X the set of

all probability measures on Ω. Any new information that becomes available at time tk is

denoted by Ik with values in Rr. This may include prices of any tradable instruments, liq-

uidity limitations, trading signals, risk limits, various statistics etc. Therefore we introduce

the process I = (Ik)k=0,...,n which generates the filtration F = (Fk)k=0,...,n which is the

richest available feature set for any decision made at tk.

Let us assume that the market consists of d hedging instruments with prices given by an

Rd-valued F-adapted stochastic process S = (Sk)k=0,...,n. No assumptions are made both on

existence of an equivalent martingale measure or the availability of hedging instruments at

a given point in time. The portfolio of contingent claims that the agent attempts to hedge is

denoted by a random variable Z that is FT measurable. For the purpose of convenience we

assume that this is a portfolio of European derivatives and that we take a short position in it.

In order to hedge the claim Z we trade in S using an Rd-valued F-adapted stochastic

process δ = (δk)k=0,...,n−1 where δk = (δ1
k, . . . , δ

d
k). In particular, δim denotes the agent’s

position in the ith asset at time tk. Since all trading is self-financed, we may want to add

some cash at time t0. The agent’s terminal wealth is given by

P/L(Z, p0, δ) = −Z + p0 + (δ · S)T − CT (δ) (2.1)

where

(δ · S)T =

n−1∑
k=0

δk(Sk+1 − Sk)

3

denotes the trading gains and losses,

CT (δ) =
n∑
k=0

ck(δk+1 − δk)

is the total cost of trading up to maturity and p0 ∈ R is the initial capital injection.

2.2 Convex risk measures

In this general setting the market can be incomplete, in which case there is a need to

specify an optimality criterion in order to determine an acceptable price of a contingent

claim. Such a price would be a minimal cash injection that is needed to be added to a

position to implement the optimal hedge in such a way that the overall position becomes

acceptable in the light of agent’s preferences. We encode this acceptability criterion by the

use of convex risk measures. Let us quickly recall ther definition

Definition 1. Let X,X1, X2 ∈ X be positions in assets. We call ρ : X → R a convex risk

measure if it is:

1. Monotone decreasing: X1 ≥ X2 ⇒ ρ(X1) ≤ ρ(X2),

2. Convex: ρ(αX1 + (1− α)X2) ≤ αρ(X1) + (1− α)ρ(X2) for α ∈ [0, 1],

3. Cash-Invariant: ρ(X + c) = ρ(X)− c for any c ∈ R.

For a convex measure ρ we define an optimisation problem

π(X) = inf
δ∈H

ρ(X + (δ · S)T − CT (δ)) (2.2)

where H denotes the space of possible trading strategies in accordance with market restric-

tions in trading (eg. due to unavailability of certain hedging instruments at given time).

Proposition 1 (see [6], Proposition 3.2, p. 7.). The functional π defined above is monotone

decreasing and cash-invariant. If CT and H are convex, then π is a convex risk measure.

The optimal hedging strategy δ ∈ H is then defined as minimizer of (2.2). One can

think of π(x) as the minimal amount of money that has to be added to a portfolio in order

to make in acceptable in the light of a risk measure ρ. Defining this as the minimal price

excludes the possibility that having no liabilities may have positive expected value (which

may be the case in a presence of positive expected returns under the physical measure).

Thus we instead focus on the indifference price p(Z) which is the amount of cash an agent

4

charges in order to be indifferent between the position −Z and no position in liabilities i.e.

π(−Z + p(Z)) = π(0) holds. By cash-invariance this is equivalent to

p(Z) = π(−Z)− π(0).

In a setting with no frictions in the market it is easily seen that this price is consistent with

the price of a replicating portfolio (provided that it exists). For the purpose of hedging

we focus on the following class of convex risk measures known as Optimised certainty

equivalents:

Definition 2. Let l : R → R be a loss function (continuous, non-decreasing and convex).

We define the OCE by:

ρ(X) = inf
w∈R
{w + E[l(−X − w)]}, X ∈ X . (2.3)

There are two specific representatives of this risk measures family that are of particular

importance for the model.

1. For a fixed λ > 0 we set l(x) = exp(λx) − 1+log(x)
λ . This leads, after optimising and

inserting back into (2.3), to the following convex risk measure

ρ(X) =
1

λ
log E[exp(−λX)] (2.4)

which is known in the literature as the entropic risk measure.

2. Setting l(x) = 1
1−αmax(x, 0) for α ∈ (0, 1) leads to what is known as the average value

at risk or expected shortfall.

Let us now recall the definition of a well-known exponential utility function U(x) = −exp(−λx).

The following result clarifies its link to the entropic risk measure.

Proposition 2 (see [6], Lemma 3.6, p. 10.). Let q(Z) be a solution of the following indif-

ference pricing problem

sup
δ∈H

E[U(q(Z)− Z + (δ · S)T − CT (δ))] = sup
δ∈H

E[U((δ · S)T − CT (δ))]

and π be defined as in (2.2). Then it follows that q(Z) = p(Z).

This choice of the agent’s preferences is very popular in the modern literature and serves

as a basis of multiple models that describe hedging with frictions (see [7], [17]).

5

2.3 Neural networks

We first recall the definition of a feedforward neural network that is a basic component of

our model.

Definition 3. Let L,N0, . . . , NL ∈ R, σi : R → R for any i = 1, 2, . . . , L, let Ai : RNi−1 →
RNi be affine functions. A function F : RN0 → RNL defined as

F (x) = FL ◦ · · · ◦ F1(x)

where

Fi = σi ◦Ai for i = 1, 2, . . . , L

is called a neural network.

It is important to note that the activation picture σi is applied componentwise. L stands

for the number of layers, N1, . . . , NL−1 are the dimensions of the hidden layers and N0, NL

of the input and output layers respectively.

Figure 2.1: An example of a neural network for the following architecture: L = 4, N0 =
2, N1 = N2 = 9, N3 = 7, and N4 = 2.

6

We also denote by NNΣ
∞,d0,d1 the set of all neural networks from Rd0toRd1 with Σ being

a set of activation functions for each of the layers. The next result (see [11]) presents the

usefulness and power of neural networks.

Theorem 1 (Universal approximation, see [11]). Suppose that each element of σ is bounded

and non-constant. The following statements are true

1. For any finite measure µ on
(
Rd0,B(Rd0)

)
and 1 ≤ p < ∞, the set NNΣ

∞,d0,d1 is

dense in Lp
(
Rd0, µ

)
.

2. If in addition every element of Σ is continuously differentiable over R, then NNΣ
∞,d0,d1

is dense in C(Rd0) for the topology of uniform convergence on compact sets.

For computational purposes we choose to work with a sequence of subsets of NNΣ
∞,d0,d1

that is denoted by
{
NNΣ

M,d0,d1

}
M∈N and has the following properties:

1. NNΣ
M,d0,d1

⊂ NNΣ
M+1,d0,d1

for all M ∈ N,

2.
⋃
M∈NNN

Σ
M,d0,d1

= NNΣ
∞,d0,d1 ,

3. for anyM ∈ N, one hasNNΣ
M,d0,d1

=
{
F θ : θ ∈ ΘM,d0,d1

}
where ΘM,d0,d1 ∈ Rk for some k ∈

N.

One could think of the sequence defined above as of all neural networks with fixed archi-

tecture parameterised by a vector θ whose number of dimensions depends on M .

Even though most of market processes to be analysed in this work possess the Markov

property, we still require our model to be able to take into account all of the actions that

took place in the past. This is crucial for the case when there are frictions in a market such

as transaction costs. In order to introduce these dependencies into the modelling process we

choose to work with Recurrent Neural Networks. One could think of RNN as of a sequence

of regular feed-forward Neural Networks where hidden layers not only output values to next

layers horizontally, but also pass them (after potentially applying different activation func-

tion) to a similar layer at the next time step. This structure makes it possible to analyse

time series.

Convex risk measures defined above are used as loss functions in the model. Before we

proceed to layout the specific structure of the algorithm, we quote the crucial result that

proves the feasibility of this method.

7

Figure 2.2: An example of a recurrent deep neural network with 3 hidden layers and 4 time
steps.

Theorem 2 (see [6], Prop. 4.2, p. 13.). Let HM denote the subspace of all strategies δ that

can be obtained with the use of networks belonging to NNΣ
M,d0,d1

. Then

lim
M→∞

πM (X) = lim
M→∞

inf
δ∈HM

ρ(X + (δ · S)T − CT (δ)) = π(X).

2.4 Numerical approximations of hedging strategies

In order to find a numerical solution for the hedging problem we compute a close-to-optimal

hedging strategy δ ∈ HM . Recall that HM denotes a family of neural networks with a fixed

architecture. Theorem 2 justifies this approach for a sufficiently flexible network. In or-

der to train the model we first generate a finite number of samples. Finally we define the

sample Ω = {ω1, . . . , ωN} where P(ωi) = 1
N for each i ∈ {1, . . . , N}. This space could be

understood as a space of underlying asset paths. Unless stated otherwise, we take a training

set of size 9× 104, a validation set of size 104, and a test set of size 105 respectively1.

The algorithm has been implemented in Python with the use of Tensorflow to construct and

train the neural network alongside with Numpy for the purpose of generating model paths.

The exact code can be found in the Appendix. The network parameters are initialised

randomly using the method proposed by He [8]. We use the Adam algorithm to train the

network [13] with an initial learning rate of 0.0005 that is then adjusted by performance

scheduling. Furthermore, we use a batch size of 200 has been used. Selu [14] activation has

1In our case, since we can simulate our data without constraints, the size of the test set is arbitrary. We
have decided to use such a relatively big number in order to make the graphical presentation clearer.

8

been applied to the hidden layers [14] and the identity activation was use for the output

layer to allow the maximal flexibility of the algorithm.

In order to train the network we specify the loss function to be the OCE of (2.3). This

function does not return its value based on data labels but it verifies the outputs of consecu-

tive constituents of a recurrent deep neural network and performs back-propagation though

time to update parameters (see [4]).

9

Chapter 3

Black - Scholes model

3.1 Theoretical results

The Black-Scholes model for option pricing seems to have been derived with the idea of

delta hedging in mind. The usefulness of this approach comes from the fact that theoreti-

cally, under assumptions of a friction-less market and continuous rebalancing, it is possible

to completely hedge-out any risk associated with writing a contingent claim since we can

replicate its payoff with probability 1. A direct consequence of that is another rather re-

markable property of the model: the value of a claim does not depend on a drift term of

the underlying asset dynamics.

Under the Black-Scholes model the theoretical price of a European call is given by

V (t, St) = N (d+)St −N (d−)e−r(T−t)K

where

d+ =
1

σ
√
T − t

(
log
(St
K

)
+
(
r +

σ2

2

)
(T − t)

)
d− = d+ − σ

√
T − t

and N (·) denotes cumulative distribution function of a standard normal random variable.

The crucial quantity that emerges during the derivation of this formula is

∆t =
∂V (t, St)

∂St
= N (d+).

If at any time t ∈ [0, T] agent holds ∆t units of the underlying asset, then she is able

to replicate the payoff completely with probability 1. In a real market situation, even if

no frictions are present, continuous trading is not possible. Hence, there is an inevitable

hedging error associated with the inability to keep the portfolio in a delta-neutral state for

the whole time of the investment.

10

3.2 Benchmark: discretized Black-Scholes model

In order to verify the performance of the algorithm we intend to compare it with a discretized

Black-Scholes model hedge. We have chosen a time horizon of 30 trading days and allowed

daily rebalancing. It follows that T = 30/365, n = 30, ti = i/365, and δti ∈ R. The structure

of each component of the recurrent network is as follows: L = 4, N0 = 1, N1 = N2 = 50,

N3 = 30, and N4 = 1, where L denotes the number of layers and Ni stand for the number

of nodes in the layer i. We used expected shortfall as a loss function.

ESα(X) =
1

1− α

∫ 1−α

0
V aRu(X)du, (3.1)

where V aRu(X) denotes the value at risk of a random variable X at the level of u given by

V aRu(X) = inf{x ∈ R : FX(x) > u}

where FX denotes the CDF of X.

We choose the following values of the parameter: α ∈ {0.5, 0.75, 0.95, 0.99}. We assume

that the risk-free rate is at the level of 0 and the annual volatility is 0.2. Finally we hedge

a portfolio of one short position in an European At the Money Call option for the initial

underlying value S0 = 100. Below we compare the model discretized Black-Scholes hedge

and neural network (NN) hedging strategies estimated by our model.

The performance of the algorithm varies tremendously with different choices of the pa-

rameter α. For the values α ∈ {0.95, 0.99} our model, even though performing better than

the discretized Black-Scholes model in terms of preventing large losses, fails to capture its

general structure. On the other hand for α = 0.5 it can be seen that the network is able to

replicate the Black-Scholes hedge reasonably well. However, one could notice a light skew-

ness of the NN hedge and larger extreme losses. The latter is quantified in the following

table that compares the model and neural network (with ES50 loss function) hedge in terms

of the mean profit/loss and percentiles of empirical distribution.

Table 3.1: Comparison of the discretized Black-Scholes hedge (theoretical) and neural net-
work strategy with the loss function ES50

Model Mean V aR99 V aR95 V aR90 V ar80 V aR50

Theoretical 0.0392 -0.9301 -0.5404 -0.3821 -0.2208 0.0394

ES50 NN 0.0398 -1.0525 -0.6089 -0.4208 -0.2334 0.0394

11

Figure 3.1: Comparison of the theoretical Black-Scholes hedge (blue) and the one returned
by the neural network (orange) evaluated for different loss functions. ESα NN hedge stands
for a hedging strategy returned by the network that optimised expected shortfall at the
level of α.

In order to attempt to solve this inaccuracy we propose a modified loss function of the

following form

lα,β(X) :=
1

1 + β

(
ES0.5(X) + βESα(X)

)
. (3.2)

Convexity of the associated risk measure follows directly from the properties of expected

shortfall.

Next we perform a grid search in order to tune the hyperparameters α and β. The search

space is a Cartesian product of A = {0.99, 0.95, 0.9, 0.75} and B = {0.01, 0.02, 0.05, 0.1}.
We find that the optimal value of parameters is (α∗, β∗) = (0.95, 0.05) for which we can see

a significant improvement compared to the initial ES 50 network hedge. We shall refer to

this loss function as the mixed expected shortfall.

12

Figure 3.2: Profit and loss distribution of the improved network strategy compared to the
theoretical one.

Table 3.2: Improved hedges comparison. The Mixed NN stand of the hedging strategy
obtain by using a (3.2) as a loss function.

Model Mean VaR99 VaR95 VaR90 Var80 VaR50

Theoretical 0.0392 -0.9301 -0.5404 -0.3821 -0.2208 0.0394

Mixed NN 0.0398 -0.9612 -0.5762 -0.4096 -0.2351 0.0419

The above result confirms the ability of the algorithm to replicate the theoretical Black-

Scholes hedge. We now discuss the strategy that was chosen when expected shortfall with

α above 0.9 was minimised. In order to take a closer look at these strategies we chose 4

price paths for which the NN hedging error was significantly different from the BS one.

Outcomes for these cases are summarised below.

Table 3.3: Hedging error for the chosen scenarios.

Model Path 1 Path 2 Path 3 Path 4

Mixed NN 0.09611 -0.0719 0.0140 0.3301

ES99 NN –0.3745 0.3056 -0.3136 -0.0626

13

Figure 3.3: Comparison of hedge parameters obtained with various loss function parameters.

We analyse two scenarios where the NN hedge obtained by optimising a restrictive risk

measure (such as ES99 or ES95) outperforms the BS one and two scenarios where the oppo-

site can be observed. One can notice a specific relative behaviour of hedging strategies. Up

to a certain point, which usually is roughly in the middle of the time horizon, both types

of hedges are almost identical. As the maturity time approaches, the Black-Scholes delta

(and hence the Mixed NN one as well) approaches either 1 or 0, depending on the value of

the underlying asset close to expiry. On the contrary, hedging parameters base on the more

restrictive criterion are closer to the value of 0.5 and could, heuristically, be characterised

14

as retaining some sort of flexibility.

There are two scenarios that require special attention. When the asset price is growing

steadily (Cases 1 and 3) the ES99 NN hedge is outperformed by the Mixed NN hedge (and

hence by the Black-Scholes delta-hedge). This is clear since the more restrictive trading

leads to poorer replication and there are no benefits from keeping hedging parameters lower.

On the other hand, when the asset price moves rapidly against the previous trend just be-

fore the expiry date, the benefits from flexibility are significant. Indeed, in Case 4 one can

see that keeping hedge parameters lower than it is suggested by the theoretical strategy led

to a significant improvement of performance at the very end of the investment horizon.

Keeping the quasi-deltas closer to 0.5 prevents severe losses caused by the lack of flex-

ibility of discretized Black-Scholes hedging parameters close the the expiry. This is then

clear that, if we would decrease a rebalance interval, then we would also reduce this effect

and, as a consequence, the difference between the two strategies would be smaller. This

coincides with theoretical result - as δt approaches 0 we are getting closer to the perfect-

hedge situation where for all possible values of α the expected shortfall would lead to the

same optimal strategy of continuous delta-hedging.

3.3 Robustness of the Black-Scholes formula

There is a remarkable robustness property of the BS delta hedging when the implied volatil-

ity does not coincide with the real underlying asset dynamics (see [12]). Assume that the

physical dynamics are as follows

dSt = µtStdt+ σtStdWt,

where µt and σt are Ft-adapted processes. The market is not assumed to be complete

and the underlying filtration Ft can be bigger that σ(St). Furthermore, we assume no

transaction costs. Suppose that an agent sold an option with a payoff g(ST) at t = 0 using

different volatility σ̄. She uses then uses this quantity to implement a continuous delta

hedging strategy. This means that the value of the option is a solution to the following

PDE:
∂V̄ (t, St)

∂t
+ rSt

∂V̄ (t, St)

∂St
+

1

2
σ̄2S2

t

∂2V̄ (t, St)

∂S2
t

− rV̄ (t, St) = 0,

V̄ (T, ST) = g(ST).

15

Denote the agent’s position in the underlying asset by Ht. Then her wealth process Xt is

governed by the SDE

dXt = HtdSt + r(Xt −HtSt)dt.

Define a tracking error as

Rt = Xt − V̄ (t, St).

A straightforward application of Ito’s lemma and noting that Ht = ∂V̄ (t,St)
∂St

lead to the

following result

dRt = dXt − dV̄ (t, St)

= HtdSt + r(Xt −HtSt)dt−
(
∂V̄ (t, St)

∂t
+

1

2
σ2
t S

2
t

∂2V̄ (t, St)

∂S2
t

)
dt− ∂V̄ (t, St)

∂St
dSt

= rXtdt−
(
∂V̄ (t, St)

∂t
+ rSt

∂V̄ (t, St)

∂St
+

1

2
σ2
t S

2
t

∂2V̄ (t, St)

∂S2
t

)
dt

= rRtdt−
(
∂V̄ (t, St)

∂t
+ rSt

∂V̄ (t, St)

∂St
+

1

2
σ2
t S

2
t

∂2V̄ (t, St)

∂S2
t

− rV̄ (t, St)

)
dt

= rRtdt+
1

2

(
σ̄2 − σ2

t

)
S2
t

∂2V̄ (t, St)

∂S2
t

dt.

Thus

d(e−rtRt) =
1

2

(
σ̄2 − σ2

t

)
S2
t

∂2V̄ (t, St)

∂S2
t

dt. (3.3)

Provided that ∂2V̄ (t,St)
∂S2

t
≥ 0, which is usually the case, as long as we price and hedge a

contingent claim with σ̄2 ≥ σ2
t for all t ∈ [0, T] then

e−rTRT =
1

2

∫ T

0

(
σ̄2 − σ2

t

)
S2
t

∂2V̄ (t, St)

∂S2
t

dt ≥ 0 a.s..

In a discretized setting we cannot expect positive trading errors with probability 1. Instead,

what we anticipate is a positive average hedging error. To further verify accuracy of the NN

algorithm we use the network trained in Section 2.2 for an annual volatility of 0.2 that for

a purpose of this analysis is considered the ”true” volatility of the underlying process. We

then use the trained network to hedge an European call option whose underlying dynamics

have different levels of volatility. This can be treated as a situation where a trader uses

a different value of implied volatility to price and hedge the claim, made a mistake in

calibration, or a model error has been made.

Table 3.4: Implied volatility hedges comparison. The ”α TV NN” denotes the model that
was trained for volatility 0.2 but evaluated at paths generated with volatility α.

Model Mean Std VaR99 VaR95 VaR90 Var80 VaR50
0.05 TV NN 1.7251 0.2748 1.0668 1.2301 1.3404 1.4758 1.7514
0.10 TV NN 1.1640 0.3510 0.4524 0.6115 0.7100 0.8426 1.14987
0.20 TV NN 0.0398 0.3771 -0.9612 -0.5762 -0.4096 -0.2351 0.0419
0.30 TV NN -1.0848 0.7547 -3.3782 -2.5223 -2.1110 -1.6516 -0.9381
0.40 TV NN -2.2072 1.3842 -6.2025 -4.8092 -4.1141 -3.3085 -1.9629

16

Negative mean hedging error for underestimated implied volatility and the opposite

result for overestimated IV coincide with the theoretical findings (3.3). What is more, a

hedging strategy based on highly underestimated volatility is not capable of replicating a

value of the highly volatile portfolio. As the result, with an increasing distance between

the true and assumed volatility the outcome starts to resemble the final payoff where the

skewness is the natural consequence of having taken a short position in the European Call

option.

Figure 3.4: Hedging comparison for miscalibrated volatility.

The algorithm has proven itself to be able to replicate the theoretical Black-Scholes

parameters with a very high accuracy. This can be seen in very similar quantities of hedging

error distributions for both the chosen network hedge and the theoretical one, as illustrated

in figure 3.3. What is more, the performance still coincides with theoretical expectations

even for a different value of volatility. One can hypothesise, that the algorithms is not

only an effective tool for the task of hedging a contingent claim for a given set of market

parameters, but could also be used as a robust tool. The latter is further explored in the

next chapter.

17

Chapter 4

Robustness of the neural network
hedge

In this chapter we intend to use the neural network in a setting closer to the real market.

We have chosen to verify the robustness of the algorithm by fitting the model to paths

govern by different stochastic processes that have been calibrated to the same market.

4.1 Models

4.1.1 Heston model

In his 1993 paper [9] Heston proposed a stochastic volatility model with semi-closed-form

solutions. In this model the stock price process is given by the following dynamics

dSt = µtStdt+
√
νtStdW

1
t , S0 ≥ 0,

where νt is governed by CIR process

dνt = κ(θ − νt)dt+ ξ
√
νtdW

2
t , ν0 ≥ 0.

Here, W 1
t and W 2

t are Brownian motions with a correlation coefficient ρ. If the parameters

obey the following condition (know as the Feller condition)

2κθ ≥ ξ2

then the process νt is strictly positive.

We specify another tradable asset that would be used to complete the market. We

choose to work with an idealised variance swap of the following form

S2
t = NνEQ[

∫ T

0
νudu|Ft]

18

where Nν ∈ N and Q is the risk neutral measure specified by the following measure change

applied to the physical dynamics SDEs

dW 1,Q
t = dW 1

t +
r − µ
σ

dt

dW 2,Q
t = dW 2

t +
µ− r
√
νt

ρ√
1− ρ2

dt

that leads to the following process dynamics

dSt = rStdt+
√
νtStdW

1,Q
t ,

dνt = κ(θ − νt)t. + ξ
√
νtdW

2,Q
t .

This specific choice of a risk-neutral measure coincides with Heston’s original choice for the

risk aversion parameter λ = 0. (see [9]).

It this setup we can easily calculate

S2
t

Nν
= EQ[

∫ T

0
νudu|Ft]

=

∫ t

0
νudu+

∫ T

t
EQ[νu|Ft]du

=

∫ t

0
νudu+

νt − θ
κ

(1− e−κ(T−t)) + θ(T − t)

where we use the Fubini’s theorem for the second equality and the integrating factor method

for the third one.

4.1.2 Bates model

Bates model, which is a natural extension of the Heston model, is a stochastic volatility

model where the asset price follows Merton’s jump-diffusion process. Hence the dynamics

are as follows

dSt = µtStdt+
√
νtStdW

1
t + JtdNt, S0 ≥ 0,

where Nt is a Poisson process with intensity λ > 0. Jt is an identically and independently

distributed random variable for which it holds that

log
(
1 + Jt

)
∼ Normal

(
log
(
1 + µJ

)
−
σ2
J

2
, σJ

)
.

The squared volatility SDE remains unchanged

dνt = κ(θ − νt)dt+ ξ
√
νtdW

2
t , ν0 ≥ 0.

19

Since JtNt − µJλt is a martingale we propose the following measure change for the Bates

model

dW 1,Q
t = dW 1

t +
r − µ− µJλ√

νt
dt

dW 2,Q
t = dW 2

t +
µ− r + µJλ√

νt

ρ√
1− ρ2

dt

that leads to risk-neutral dynamics

dSt = (r − µJλ)Stdt+
√
νtStdW

1,Q
t + JtdNt,

dνt = κ(θ − νt)dt+ ξ
√
νtdW

2,Q
t .

Again, an idealised variance swap is used as an additional tradable claim. It is important

to note that in the presence of jumps the market remains incomplete.

4.1.3 Variance Gamma with CIR stochastic clock

Consider a Levy processX(t) ∼ V G(Ct,G,M) that has increments distributed with Variance-

Gamma process. We put a stochastic clock Yt =
∫ t

0 ytdt where yt is a CIR process defined

in the previous models. In the Variance-Gamma model with CIR clock (VG-CIR) the price

process is given by

St = S0 exp
(
X(Yt)− YtψX(−i)

)
,

where ψX(u) is the logarithm of the characteristic function of Variance-Gamma process

ψX(u) = C log

(
GM

GM + (M −G)iu+ u2

)
.

Since a Variance-Gamma process can be seen as a difference of two Gamma processes, for

the purpose of simulation we compute X(t) = Γ1
t − Γ2

t , where Γ1
t is a Gamma process with

mean C and variance C
M and Γ2

t with mean C and variance C
G .

4.2 Calibrated parameters

We consider three models of different structure that have been calibrated to the same market

and quote the results from [16]. These were obtained from the market data available in the

year 2003 that consisted of 144 plain vanilla European call options with maturities varying

from one month to 5 years.

20

Table 4.1: Calibrated parameters

Model Parameters

Heston ν0 = 0.0654, κ = 0.6067, θ = 0.0707, ξ = 0.2928, ρ = −0.7571

Bates ν0 = 0.0574, κ = 0.4963, θ = 0.0650, ξ = 0.2286, ρ = −0.9900, µJ =
0.1791, σJ = 0.1346, λ = 0.1382

VG-CIR C = 18.0968, G = 20.0276, M = 26.3971, κ = 1.2101, η =
0.5501, λ = 1.7913, y0 = 1

Table 4.2: Expected value and variance of the price at maturity for each of the models.

Heston Bates VG-CIR

Mean 99.9265 100.0210 99.9172

Std 24.0823 23.8287 23.9734

Examples of sample paths for each of these models can be found in the Appendix A.

4.3 Numerical results: robustness

We choose a time horizon of one year and allow weekly rebalancing., i.e. T = 1, n = 52, ti =

i/52 and δti ∈ R2. Furthermore, we specify the mixed expected shortfall risk measure (3.2)

for parameters (α, β) = (0.95, 0.5) and choose Nν = 1000. To simulate Heston and Bates

model paths we use Euler-Maruyama with 10 grid points per trading day. The hedged

portfolio consist of a short position in a European At the Money Call option.

The distribution of Heston profit and loss seems to coincide with theoretical expectations

and the level of similarity between two hedges also is not surprising either. As jumps - in

accordance with calibration parameters - occurred in only 12.09% of Bates model paths,

the diffusion-based parts of the hedging errors are similar. The minor difference in tight-

ness is caused by a lower long-term mean variance for the Bates model (Table 5.1). It is

also important to stress that, as risk associated with jumps is unhedgable, one can observe

severe losses in the left tail of jump-diffusion based model. Appropriate quantiles and the

differences in standard deviation are summarised in Table 5.2.

21

Figure 4.1: Comparison of the hedging errors of the two different neural networks that were
trained separately for the Heston and Bates models.

Table 4.3: Heston and Bates hedging errors.
Model Mean Std VaR99 VaR95 VaR90 Var80 VaR50
Heston -9.5706 1.2284 -13.0601 -11.5889 -10.9857 -10.4095 -9.5360
Bates -9.4673 1.5181 -13.9575 -11.3921 -10.7652 -10.2115 -9.4106

The neural network model captures the behaviour of both of the stochastic volatility

models well when fitted to both data sets separately. Now we investigate flexibility of this

approach by training the model on a set that consists of paths for both models. After

fitting our model to the merged dataset (this model is later referred to as the double NN)

we compare the results with those obtained previously (from separate training for each of

the underlying dynamics). We find that the hedging error distribution remains almost un-

changed. The only significant change (of more than 1% of the initial premium) is observed

for the value of V aR99.

22

Figure 4.2: Comparison of the double NN hedging errors evaluated separately on Heston
and Bates models calibrated to the same market.

Table 4.4: Performance of the NN trained on double sample set. The difference of VaR is
expressed as a percent of initial premium.

Model
Differences between the single and double NN:

Mean Std VaR99 VaR95 VaR90 VaR80 VaR50

Bates 0.0001 -0.0460 1.39% -0.11% -0.24% -0.17% 0.02%
Heston 0.0001 0.0214 -1.11% -0.77% -0.50% -0.30% 0.25%

In order to further verify the robustness of the algorithm we add the third model:

Variance Gamma with CIR stochastic clock. Now we fit the network to a training set that

consist of sample paths of all aforementioned models. We would like to stress that we have

chosen Heston and Bates as models that have a similar structure while the third one exhibits

entirely different characteristics. This has a direct impact on the distribution of profit and

loss as we expect a much less accurate hedge under the Variance Gamma (VG) which is a

pure jump model.

23

Figure 4.3: Comparison of NN hedging errors between the VG-CIR and Bates model cali-
brated to the same market.

Again, we train the network on a dataset that consists of paths from all three models

(this model is later referred to as the triple NN) and then compare hedges with these

obtained by training only for model specific underlying dynamics. In this case we used

270000 and 30000 paths for the training and validation sets respectively. Separate test sets

for each model consist of 100000 paths. We find that the increased complexity of this task

had a significant effect on the hedge quality as can be seen in Figure 4.4. In particular, one

can observe a heavier tail and skewness of the triple network hedge applied to the Bates

model paths. The change in the realised V aR99 was at the level of 4.6740 which equates to

49.40% of the initial premium and indicates a presence of severe extreme losses.

24

Figure 4.4: Comparison of the triple NN hedging errors evaluated separately on Heston,
Bates and VG-CIR models calibrated to the same market.

In naueral network attempt to address these problems, we extend the architecture of

the net by adding a fourth hidden layer in front for each component of the recurrent neural

network. We choose the same model hyperparameters except for the number of nodes that

was rised to 100 in the added layer. The model is fitted to the dataset that consisted of path

from all three models. The differences between network hedging errors measured in V aR99

are of 10−2 order of magnitude. Hence no improvement was made - with very similar

parameters for both Heston and VG-CIR hedging error distributions we still encounter

difficulties with the jump-diffusion model.

4.4 Discussion

The series of examples presented above, even though far from a rigorous study, points out

that the robustness of our algorithm is somehow limited. Indeed, as the number of different

25

models included in the dataset was increased the overall performance of the algorithm got

worsened despite of the attempt to extend the architecture of the net.

Ideally we would expect the neural network not only to learn close-to-optimal hedging

parameters for each model, but also to effectively classify paths on which the net is trained.

That could be achieved, for example, by learning quadratic variation of a process or being

able to detect a presence of jumps. However, this is challenging in a discretized, market

as many of characteristic features are not included in a sampled process path. In order to

address these deficiencies, one could try to extend the input set instead. Such augmentation

could include a statistic computed from the sample path. As proposed by [1] one could add

an estimator of presence of jumps in a discretized path. Another approach would be to

consider not only the original dataset, but also its transformations, such as higher order

polynomials.

26

Chapter 5

Markets with frictions

The vast majority of the theoretical results is at least to some extend spoilt when trans-

action costs are accounted for. For example, the delta-hedging in the Black-Scholes model

requires continuous trading which is tremendously expensive in the presence of frictions. In

fact, in such a market setting there does not exist a portfolio that perfectly replicates the

payoff of a claim. Various relaxations were proposed, including the concept of superhedging:

instead of attempting to replicate the payoff one finds the smallest initial capital that allows

to implement a strategy whose terminal wealth majorizes claim’s payoff. Other approaches,

such as variations of the classical PDE-oriented derivations or utility based strategies are

also popular.

Trading costs commonly take one of the following forms:

1. Linear transaction costs: c(n) =
∑d

i=1 c
iSit |ni|,

2. Fixed transaction costs: for ε > 0 c(n) =
∑d

i=1 c
i
1{|ni|>ε},

3. Nonlinear costs associated with market impact.

In the following sections we focus mostly on the linear costs and we attempt to investigate

some of the most well known theoretical models that describe hedging with frictions.

5.1 Leland model

The first influential paper that discussed trading costs was published by Leland in 1985

(see [15]). Using a formal delta-hedging argument he derived an alternative version of

the Black-Scholes equation. In this model, one assumes that costs are of the form of

c(n) =
∑d

i=1 κS
i
t |ni|, trading takes place in intervals of δt, where the both mentioned

27

quantities are sufficiently small, and the ratio κ
δt is of order one. The derived PDE takes

the form of

∂Vt
∂t

+ rSt
∂Vt
∂St

+
1

2
σ2S2

t

∂2Vt
∂S2

t

− κσS2
t

√
2

πδt

∣∣∣∣∂2Vt
∂S2

t

∣∣∣∣− rVt = 0

and hence one uses a cost-adjusted volatility

σ̂2 = σ2
(

1± 2κ

σ

√
2

πδt

)
where the sign depends on payoff’s convexity. It is crucial to note that the accuracy of

this approach relies heavily on the size of κ and δt as the derivation includes approximations.

5.2 The Utility Based Hedging

In modern finance it is common to describe risk preferences by a utility function an agent

is trying to maximize. One usually assumes, mostly for the computational ease, that these

preferences take a form of

U(x) = −exp(−λx)

where λ > 0 the absolute risk aversion parameter. It was shown that the option price varies

very little with different choices of utility functions and that the only crucial factor is the

risk aversion parameter [2].

Even though the utility based approach to hedging might seem to be particularly useful,

there are certain disadvantages including difficulties in implementation and computational

inefficiency. Other simplified strategies were proposed, one of which is known as the delta

tolerance strategy were one constrains the optimal hedging ratio at time t to evolve be-

tween two boundaries ∆+
t and ∆−t . As long as the hedge is between these boundaries no

rebalancing takes place. However, if the hedge ratio happens to move outside of the no

transaction region, then the portfolio is rebalanced. This moves the hedge to the nearest

boundary. Whalley and Willmott [17] were the first to perform an asymptotic analysis

under the assumption of small linear transaction costs. With the use of Taylor expansion of

the variable κ in powers of 1
3 they proved that the asymptotically optimal boundaries are

of the following form

∆±t =
∂Vt
∂St
±
(

3

2

e−r(T−t)κStΓ
2
t

λ

) 1
3

(5.1)

where

Γt =
∂2Vt
∂S2

t

.

As expected, the theoretical Black-Scholes delta-hedging parameter lies in the centre of the

no transaction region.

28

5.3 Theoretical benchmarks

In this section we stay in the Black-Scholes setting from the previous chapter with the

exception of an increased rebalancing frequency of 4 trades a day. It follows that T =

30/365, n = 90, ti = i/1640, and δti ∈ R and the hedged portfolio consist of a short

position in a European At the Money Call option. We intend to use the no-transaction

region based strategy by Whalley and Willmott (WW) adapted to the discretized setting

and the Leland hedge as our benchmarks. For the latter the adjusted value of volatility is

σ̂ = 0.2128.

Table 5.1: Performance of theoretical hedges adapted to discretized non-frictionless Black-
Scholes setting.

Model Mean Std VaR99 VaR95 Ent 0.5 Ent 1
Black-Scholes -2.6741 0.2450 -3.3766 -3.1160 2.6900 2.7059
Leland -2.6650 0.2301 -3.2935 -3.0562 2.6784 2.6922
WW (λ = 0.5) -2.4504 0.5041 -3.3601 -3.2038 2.5128 2.5783
WW (λ = 1) -2.4600 0.4400 -3.5229 -3.1373 2.5076 2.5551

Figure 5.1: No-transaction region hedges for the risk aversion 0.5 and 1 (WW 0.5 and WW
1 respectively) compared to the Black-Scholes and Leland delta-hedging parameters for 2
underlying asset price path.

The above results point to a trade off between mean value and the dispersion of the

profit and loss distribution. Both the Black-Scholes and Leland hedge, as they attempt

to replicate the final payoff, result in much lower standard deviation. However, as these

strategies are based on extensive trading in the underlying, they lead to significantly lower

mean loss value. As can be seen in Figure 5.1, the utility based strategies require far less

frequent trading. In addition to that, the utility based approach can be seen as notably

more risk averse which leads to smaller values of VaR measure.

29

5.4 Numerical results

We intend to use a neural network to design a hedging strategy that is a mixture of the two

approaches described above. We attempt to use the neural network architecture from the

previous sections and find that in the new setting with transaction costs the convergence of

the algorithm to any of the theoretical results is not trivial. The entropy based loss func-

tion optimisation leads to a hedge that is far more restrictive at the end of the investment

horizon i.e. chooses hedging parameters close to the value of 0.5 and, as a result, leads to

a very high standard deviation of 0.7435 and 0.6537 for risk-aversion parameters λ = 1 and

λ = 0.5 respectively. This is similar to the results obtained is Section 3.2 when the expected

value with a very high risk-aversion parameter was used as a loss function.

In order to improve on this we would like to design a strategy that is a mixture of the

replication and utility-based approach. This requires a greatly extended network architec-

ture (see Figure 5.2).

The training process in now divided into two parts. Firstly, we train our model to capture

low level features of a particular market. This means (in the notation used in Figure 5.2)

that we evaluate the loss function f1 for the intermediate layers and then back-propagate

to the Input layers. Once the training is done we the freeze gradient optimiser for the layers

of the original network (blue background). Next we fit a possibly different loss function f2

and train on a modified dataset that consists both of the outputs of the intermediate layers

as well as of the original input layers. This method of deep learning is a variation of what

is known as the transfer learning [4].

30

Figure 5.2: The extended network architecture.

In the particular case of hedging in the Black-Scholes setting with proportional trans-

action costs we specify

f1(X) = lα,β(X)

to be the mixed expected shortfall loss used in Section 3. This means, that we want to

capture the hedging behaviour for the frictionless market. Next, we specify f2 as follows

f2(X) = Ent1(X) + γ
n−1∑
k=0

|δk+1 − δk|+ ν d(δ,Hc) (5.2)

where d(x,A) denotes the distance between a point x and a set A and Ent1 is the entropic

loss function with the risk-aversion parameter λ = 1. We additionally penalise aggressive

trading but also use the penalty method to make sure that obtained solution lies within

a feasible set. One should consider λ and γ to be hyperparameters of the model whereas

ν � 0 is a Lagrange multiplier. The set Hc is a band of width 0.15 around the close-

to-optimal frictionless hedging strategy calculated at the first training step. The chosen

network architecture is L = 8, N0 = 1, N1 = N2 = N5 = N6 = 50, N3 = N7 = 30,

N4 = N8 = 1. The first 4 layers are used for the initial training and then are frozen for the

rest of computations. We also choose (λ, γ, ν) = (1, 10−3, 108).

31

Figure 5.3: Comparison of Leland, Whalley Willmott and our engineered strategy.

The resulting strategy seems to indeed be a mixture of both mentioned approaches,

but only up to a certain point is time. Indeed, for over half of the investment horizon the

intensity of rebalancing of the engineered strategy is between the other approaches. This

is quantified by calculating the mean sum of the absolute values of changes in the hedging

parameters over the investment horizon. It follows that an average sum of changes in port-

folio is at the level of 2.91 for Leland’s strategy, 0.82 for Whalley Willmott, and 1.12 for our

engineered strategy. Unfortunately, our hedge still suffers (albeit to a smaller extent) from

the same characteristic behaviour of a as the pure utility based neural hedge - the position

near the end of the investment horizon is too risky in the light of the risk measure. For

both presented paths the hedging parameters approach the boundary specified by the last

component of the loss function (5.2).

With the use of the prepossessing step we managed to capture a low level feature of the

market, which in this case is the structure of the theoretical hedge under no frictions, and

then use it as the foundation for a new strategy. Even though there is still space for im-

provement left, this example shows that the network could be further developed used as

a financial engineering tool. We also believe that this approach could be extended greatly

with the reinforcement learning techniques. We find autoencoders to be particularly inter-

esting, as they can learn efficient representations of data. This additional capacity could

be seen as a crucial component when there is a log of ambiguity on the setting, as it was

shown is Chapter 4.

32

Chapter 6

Conclusion

6.1 Conclusion

In this dissertation we looked at the state-of-the-art deep learning approach to hedging.

We verified the performance of an algorithm that was proposed in the literature in the

Black-Scholes setting as a benchmark. In addition to a remarkable ability to replicate the

discretized delta-hedge, we also discovered that the approach is capable of constructing

alternative hedging strategies that are optimal in light of various other criteria such as the

expected shortfall with a high risk-aversion parameter. In addition, we found that the re-

sults coincide with the theoretical findings obtained by applying the Black-Scholes formula

with a mis-calibrated volatility. This robustness potential was later verified by fitting the

model to a set of paths originating from different models that had been first calibrated to the

same market. We discovered that increasing diversity of the training set negatively affected

the performance of the algorithms, especially in the light of a restrictive risk measure such

as the value at risk with its parameter at the level above 0.9. Extensions of the network

architecture failed to improve on this issue and left potential for further research.

The usefulness of the approach can be seen in a setting with a lot of ambiguity such as

non-linear hedging and the pricing problem under the presence of transaction costs. We

used the network to engineer a strategy that is a mixture of two types of approaches: Le-

land’s quasi-replicating strategy with adjusted volatility and the utility based no-transaction

zone approach. This is achieved by using a variation of the transfer learning method and

could be further used in a far more general setting.

6.2 Further research

The rapid development of cutting-edge deep and reinforcement learning techniques make

it possible to view a lot of financial problems from a different perspective. With a grow-

33

ing interest in robust techniques one could further develop the algorithm as a model-free

tool. The possible extension includes prepocessing the dataset with the use of autoencoders

which could boots the ”classification” capacity of the algorithm and hence improve on the

robustness. In addition to that, techniques originating from time series analysis (such as

jump presents estimators) or topological transforms of the dateset could further improve on

the current findings. We find that the most exciting further work would be to explore the

potential of the net as a tool for engineering hedging strategies with desired properties. In

addition to that, one could apply neural network techniques in the context of the market

impact modelling, or for problems such as liquidation strategies in algorithmic trading. The

advantage of this approach might be seen in overcoming the difficulties arising from the lack

of mathematical tractability of many utility-based models.

34

Bibliography

[1] Ait-Sahalia, Y. and Jacod, J. (2009): Testing for Jumps in a Discrete Obsereved Pro-

cesses, The Annals of Statistics, Vol. 37, No. 1, pp. 184-222

[2] Andersen, E. D. and Damagaard, A. (1999): Utility Based Option Pricing with Propor-

tional Transaction Costs and Diversification Problems: an Interior-Point Optimization

Approach, Applied Numerical Mathematics, 29, pp. 395-422.

[3] Bates, D. (1996): Jumps and stochastic volatility: the exchange rate processes implicit

in Deutschemark options, Rev. Fin. Studies, Vol. 9, pp. 69107.

[4] Bengio, Y., Goodfellow I. and Courville A. (2016): Deep learning, MIT Press

[5] Black, F. and Scholes, M. (1973): The pricing of options and corporate liabilities,

Journal of political economy, pp. 637-654

[6] Buehler, H., Gonon, L., Teichmann, J. and Wood, B. (2018): Deep hedging,

arXiv:1802.03042v1

[7] Davis, M. H. A. and Panas, V. G. and Zariphopoulou, T. (1993): European Option

Pricing with Transaction Costs, SIAM Journal of Control and Optimization, 31(2), pp.

470-493.

[8] He, K., Zhang, X., Ren, S. and Sun, J. (2015): Delving Deep into Rectifiers: Surpassing

Human-Level Performance on ImageNet Classification, arXiv:1502.01852v1

[9] Heston, S. (1993): A Closed-Form Solution for Options with Stochastic Volatility with

Applications to Bond and Currency Options, The Review of Financial Studies. 6 (2):

pp. 327-343

[10] Hoggard, T., Whalley, A. E. and Wilmott, P. (1994): Hedging Option Portfolios in

the Presence of Transaction Costs, Advances in Futures and Options Research, 7, pp.

21-35.

35

[11] Hornik, K. (1991): Approximation Capabilities of Multilayer, Feedforward Networks,

Neural Networks, Vol. 4, No. 2, pp. 251-257

[12] El Karoui, N., Jeanblanc-Picque, M. and Shreve, S. E. (1998): Robustness of the Black

and Scholes formula, Mathematical Finance, 8, pp. 93-126

[13] Kingma, D. P. and J. Ba, (2015): Adam: a method for stochastic optimisation, Pro-

ceedings of the International Conference on Learning Representations (ICLR)

[14] Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S. (2017): Self-Normalizing

Neural Networks, arXiv:1706.02515

[15] Leland, H. (1985): Option Pricing and Replication with Transactions Costs, The Jour-

nal of Finance, Vol. 40, No. 5, pp. 1283-1301

[16] Schoutens, W., Simons, E. and Tistaert, J. (2003): A Perfect Calibration! Now What?

[17] Whalley, A. E. and Willmott, P. (2002); An Asymptotic Analysis of an Optimal Hedging

Model for Option Pricing with Transaction Costs, Mathematical Finance: an interna-

tional journal of mathematics, statistics and financial economics, Vol. 7, No. 3, pp.

241-324

36

Appendix A

Calibrated market paths

Figure A.1: Sample training paths for Heston, Bates, and VG-CIR models calibrated to the
same market.

37

Appendix B

Python code

Below we present the most important parts of our code responsible mostly for the construc-

tion and training of the models.

B.1 Packages inclusions and basic functions definitions

1 import numpy as np
2 import matp lo t l i b . pyplot as p l t
3 import pandas as pd
4 import s c ipy . s t a t s as s s
5 import t en so r f l ow as t f
6

7 de f s hu f f l e b a t c h (X, ba t ch s i z e) :
8 rnd idx = np . random . permutation (l en (X))
9 n batches = len (X) // ba t ch s i z e

10 f o r batch idx in np . a r r a y s p l i t (rnd idx , n batches) :
11 X batch = X[batch idx]
12 y i e l d X batch
13

14 de f r e s e t g r aph () :
15 t f . r e s e t d e f a u l t g r a ph ()
16

17 de f s e t s e e d (seed=42) :
18 t f . set random seed (seed)
19 np . random . seed (seed)

B.2 Construction and training of the basic RNN

1 r e s e t g r aph ()
2

3 r e t r a i n i n g = False
4 e xpon en t i a l l e a r n i n g r a t e d e c ay = False
5

6 ## cr ea t i n g checkpo int s
7 from datet ime import datet ime
8 now = datet ime . utcnow () . s t r f t ime (”%Y%m%d%H%M%S”)
9 r o o t l o g d i r = ” t f l o g s ”

10 l o g d i r = ”{}/ run−{}/” . format (r o o t l o gd i r , now)
11

12 ## network a r c h i t e c t u r e

38

13 n s t ep s = 52 # lenth o f a time s e r i e s
14 n inputs = 2 # d imens ina l i t y o f input
15 n neurons = [50 , 5 0 , 2 0 , 2] # noumber o f nodes in l a y e r s
16 a c t i v a t i o n s = [t f . nn . se lu , t f . nn . se lu , t f . nn . se lu , None] # ac t i v a t i o n fu cn t i on s
17 n l a y e r s = 4
18

19 # se t t i n g up performance schedu l ing
20 max checks wi thout progres s = 10
21 che ck s w i thou t p rog r e s s = 0
22 i f not r e t r a i n i n g :
23 b e s t l o s s = np . i n f t y
24

25

26 ## decay s t eps=4000 ### used in case o f the exponenc ia l decay
27 ## decay ra te=1/3
28

29 # t ra i n i n g parameters
30 i n i t i a l l e a r n i n g r a t e = 0.00005
31 n epochs = 400
32 g l o b a l s t e p = t f . Var iab le (0 , t r a i n ab l e=False , name=” g l o b a l s t e p ”)
33 ba t ch s i z e= 200
34

35 # de f i n i n g p l a c e g o l d e r s
36 X = t f . p l a c eho ld e r (t f . f l o a t32 , [None , n steps , n input s])
37 t r a i n i n g = t f . p l a c e h o l d e r w i t h d e f au l t (False , shape=() , name=’ t r a i n i n g ’)
38

39 # cons t ruc t i on o f the network
40 with t f . v a r i a b l e s c op e (’ rnn ’ , i n i t i a l i z e r=t f . v a r i a n c e s c a l i n g i n i t i a l i z e r ()) :
41

42 # a l i s t o f BasicRNNcells
43 l a y e r s = [t f . c on t r ib . rnn . BasicRNNCell (num units=n neurons [l a y e r] ,
44 a c t i v a t i o n=a c t i v a t i o n s [l a y e r])
45 f o r l a y e r in range (n l a y e r s)]
46

47 #dynamical ly un ro l l ed approach
48 mu l t i l a y e r c e l l = t f . c on t r ib . rnn . MultiRNNCell (l a y e r s)
49 outputs , s t a t e s = t f . nn . dynamic rnn (mu l t i l a y e r c e l l , X, dtype=t f . f l o a t 3 2)
50

51 i f e xpon en t i a l l e a r n i n g r a t e d e c ay :
52 l e a r n i n g r a t e=t f . t r a i n . exponent i a l decay (i n i t i a l l e a r n i n g r a t e , g l oba l s t ep

, decay steps , decay ra te)
53 e l s e :
54 l e a r n i n g r a t e = i n i t i a l l e a r n i n g r a t e
55

56 l o s s = t f . e n t r o p i c l o s s (1 0 0 . 0 , 0 . 5) #l o s s func t i on : etropy in t h i s case
57

58 #de f i n i n g the opt imi s ing a lgor i thm
59 opt imize r = t f . t r a i n . AdamOptimizer (l e a r n i n g r a t e=l e a r n i n g r a t e)
60 t r a i n i n g op = opt imize r . minimize (l o s s , g l o b a l s t e p=g l o b a l s t e p)
61

62 # de f i n i n g v a r i a b l e s i n i t i a l i z e r and a saver (to manage graph e a s i l y)
63 i n i t = t f . g l o b a l v a r i a b l e s i n i t i a l i z e r ()
64 saver = t f . t r a i n . Saver ()
65

66 pr in t (”Up and running ! ”) # Safe ty check
67

68 # Training
69 with t f . S e s s i on () as s e s s :
70

39

71 # re s t o r i n g graph i f needed . I f not we i n i t i a l i z e v a r i a b l e s .
72 i f r e t r a i n i n g :
73 saver . r e s t o r e (s e s s , ” . / my d i s s e r ta t i on mode l . ckpt ”)
74 e l s e :
75 i n i t . run ()
76

77

78 f o r epoch in range (n epochs) :
79 f o r X batch in s hu f f l e b a t c h (X train , b a t ch s i z e) :
80 s e s s . run ([t r a in ing op , outputs] , f e e d d i c t={X: X batch })
81

82 l o s s t r a i n = s e s s . run (l o s s , f e e d d i c t={X: X tra in })
83 l o s s v a l = s e s s . run (l o s s , f e e d d i c t={X: X va l ida t i on })
84

85 # performance schedu l ing
86 i f not e xpon en t i a l l e a r n i n g r a t e d e c ay :
87 i f l o s s v a l < b e s t l o s s :
88 save path = saver . save (s e s s , ” . / my d i s s e r ta t i on mode l . ckpt ”)
89 b e s t l o s s = l o s s v a l
90 che ck s w i thou t p rog r e s s = 0
91 e l s e :
92 che ck s w i thou t p rog r e s s += 1
93 i f ch e ck s w i thou t p rog r e s s > max checks wi thout progres s :
94 pr in t (”Early stopping ! ”)
95 break
96

97 i f e xpon en t i a l l e a r n i n g r a t e d e c ay :
98 pr in t (”{}\ tCurrent t r a i n l o s s : { : . 6 f }\ tCurrent va l l o s s : { : . 6 f }\

tBest l o s s : { : . 6 f }\ tLearning ra t e : { : . 6 f }” . format (
99 epoch , l o s s t r a i n , l o s s v a l , b e s t l o s s , l e a r n i n g r a t e . eva l ()))

100 e l s e :
101 pr in t (”{}\ tCurrent t r a i n l o s s : { : . 6 f }\ tCurrent va l l o s s : { : . 6 f }\

tBest l o s s : { : . 6 f }\ tLearning ra t e : { : . 1 0 f }” . format (
102 epoch , l o s s t r a i n , l o s s v a l , b e s t l o s s , l e a r n i n g r a t e))
103

104

105 # saving f i n a l r e s u l t s
106 with t f . S e s s i on () as s e s s :
107 saver . r e s t o r e (s e s s , ” . / my d i s s e r ta t i on mode l . ckpt ”)
108 pr in t (” Fina l l o s s : { : . 6 f }” . format (b e s t l o s s))
109 ou tpu t s va l i d a t i on = s e s s . run (outputs , f e e d d i c t={X: X va l ida t i on })
110 ou tpu t s t r a i n = s e s s . run (outputs , f e e d d i c t={X: X tra in })
111 ou tpu t s t e s t = s e s s . run (outputs , f e e d d i c t={X: X tes t })
112 l o s s v a l i d a t i o n = s e s s . run (l o s s , f e e d d i c t={X: X va l ida t i on })
113 l o s s t r a i n = s e s s . run (l o s s , f e e d d i c t={X: X tra in })
114 l o s s t e s t = s e s s . run (l o s s , f e e d d i c t={X: X tes t })

B.3 Crucial parts of the extended RNN constructing code
(after pretraining)

1 [. . .]
2

3 ## network a r c h i t e c t u r e
4 n s t ep s = 52 # lenth o f a time s e r i e s
5 n inputs = 2 # d imens ina l i t y o f input
6 n neurons = [50 , 50 , 20 , 2 , 50 , 50 , 20 , 1] # noumber o f nodes in l a y e r s
7 a c t i v a t i o n s = [t f . nn . se lu , t f . nn . se lu , t f . nn . se lu , None , t f . nn . se lu , t f . nn . se lu , t f .

nn . se lu , None] # ac t i v a t i o n fu cn t i on s

40

8 n l a y e r s f r o z e n=4
9 n l a y e r s = 8

10

11

12 [. . .]
13

14

15 # cons t ruc t i on o f the extended network
16 with t f . v a r i a b l e s c op e (’ rnn ’ , i n i t i a l i z e r=t f . v a r i a n c e s c a l i n g i n i t i a l i z e r ()) :
17

18 # a l i s t o f BasicRNNcells
19 l a y e r s = [t f . c on t r ib . rnn . BasicRNNCell (num units=n neurons [l a y e r] ,
20 a c t i v a t i o n=a c t i v a t i o n s [l a y e r])
21 f o r l a y e r in range (n l a y e r s)]
22

23 #dynamical ly un ro l l ed approach
24 mu l t i l a y e r c e l l = t f . c on t r ib . rnn . MultiRNNCell (l a y e r s)
25 outputs , s t a t e s = t f . nn . dynamic rnn (mu l t i l a y e r c e l l , X, dtype=t f . f l o a t 3 2)
26

27 [. . .]
28 # specy f i ng t r a i n ab l e l a y e r s and pas s ing them to the opt im i s e r
29 t r a i n i n g v a r s = t f . g e t c o l l e c t i o n (t f . GraphKeys .TRAINABLE VARIABLES, scope=”rnn/

rnn/ mu l t i r n n c e l l / c e l l [4 5 6 7] ”)
30 opt imize r = t f . t r a i n . AdamOptimizer (l e a r n i n g r a t e=l e a r n i n g r a t e)
31 t r a i n i n g op = opt imize r . minimize (l o s s , g l o b a l s t e p=g l oba l s t ep , v a r l i s t=

t r a i n i n g v a r s)
32

33 # specy f i ng f r o z en l a y e r s and de f i n i n g an add i t i ona l saver to r e s t o r e them
34 r eu s e va r s = t f . g e t c o l l e c t i o n (t f . GraphKeys .GLOBAL VARIABLES, scope=”rnn/rnn/

mu l t i r n n c e l l / c e l l [0 1 2 3] ”)
35 r e s t o r e s a v e r = t f . t r a i n . Saver (v a r l i s t=r eu s e va r s)
36

37 # de f i n i n g v a r i a b l e s i n i t i a l i z e r and a saver (to manage graph e a s i l y)
38 i n i t = t f . g l o b a l v a r i a b l e s i n i t i a l i z e r ()
39 saver = t f . t r a i n . Saver ()
40

41 pr in t (”Up and running ! ”) # Safe ty check
42

43 # Training
44 with t f . S e s s i on () as s e s s :
45

46 # re s t o r i n g graph i f needed . I f not we i n i t i a l i z e v a r i a b l e s .
47 i f r e t r a i n i n g :
48 saver . r e s t o r e (s e s s , ” . / my d i s s e r ta t i on mode l . ckpt ”)
49 e l s e :
50 i n i t . run ()
51 r e s t o r e s a v e r . r e s t o r e (s e s s , ” . / my pretra ined model . ckpt ”)
52

53 [. . .]

41

