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Disclaimer

This paper and its contents have been provided to you for informational purposes only. This information is
not advice on or a recommendation of any of the matters described herein or any related commercial transactions,
whether they consist of physical sale or purchase agreements, �nancing structures (including, but not limited
to senior debt, subordinated debt and equity, production payments and producer loans), investments, �nancial
instruments, hedging strategies or any combination of such matters and no information contained herein constitutes
an o�er or solicitation by or on behalf of BP p.l.c. or any of its subsidiaries (collectively �BP�) to enter into
any contractual arrangement relating to such matters. Neither BP p.l.c. nor any BP company within the BP
Group (collectively �BP�) is responsible for any inaccuracies in the information contained herein. BP makes no
representations or warranties, express or implied, regarding the accuracy, adequacy, reasonableness or completeness
of the information, assumptions or analysis contained herein or in any supplemental materials, and BP accepts no
liability in connection therewith. BP deals and trades in energy related products and may have positions consistent
with or di�erent from those implied or suggested by this thesis.

IST Quantitative Analytics 2 of 86 September 24, 2019



IS
T
_
Q
u
a
n
ti
ta
ti
v
e_

A
n
al
y
ti
cs
_
In
te
ll
ec
tu
a
l_
P
ro
p
er
ty

Abstract

There are di�erent methods to compute the value of a gas storage contract. One of them is to compute the
optimal expected cash-�ows we can get managing the storage for the duration of the contract. The aim of this
report is to use this method where the price model depend on the actions of the market agents, especially other gas
storages managers. We use Mean Field Games theory as introduced in 2006 by P.L. Lions to �nd the equilibrium
state of the system and therefore obtaining the optimal control and the value function for a generic player. After
presenting gas storages contracts and how to value them in general, we explore di�erent price models and we use
a linear-quadratic framework to model the storages features, presenting adapted numerical methods to solve the
obtained equations. We then focus on a "hard constraints" model and the numerical method for it. We also
discuss about the notion of price of anarchy. Last we introduce some extended games with multiple markets or
inhomogeneous storage features, and price model beliefs among the agents.
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Mean Field Game Theory for Gas Storage Valuation - BP Con�dential

1 Introduction

1.1 On gas storage

As a deregulation trend has driven the energy markets and in particular the gas market since the late 80s, gas
trading has become more and more important. At the same time the natural gas consumption increased and the
global production hit a record high of 3 590 Billion cubic meters in 2015 (1.6% higher than in 2014). Therefore it
makes sense to have a closer look at the gas market and its derivative products.

Among these products are the gas storage that are roughly speaking facilities allowing to store gas when it is
cheap (usually during summer) and to pump it out and sell it when the price is high (usually during winter). A
storage used to be owned by utilities for the basic purpose of balancing the supply in regards with the demands
of customers. However the use of these facilities in developed countries for security of supply increased as the
deregulation also spread to the gas storage contracts. Now storages are used and priced as an independent service,
some of them can be operated by several companies at the same times for instance (Joint venture). These companies
are usually trying to capture the moves in gas price to add value (due to weather, political decisions, ..) as well as
the seasonality.

The tools developed in other asset classes to value American or Bermudan options can be used to value gas
storage. Indeed, a storage contract can be viewed as an optimal stochastic problem (Swing options, which are
commonly traded are degenerated gas storages). Some constraints due to the physical storage facilities must be
considered when valuing such an asset.

Along this report we will study the valuation of gas storages when the price model uses the volumes of the market
as an explicative variable. The volumes being the mean of the controls of the other storages, the market agents can
be seen as players trying to maximize their payo� in a non-zero -sum game. We use a Mean Field Game framework
to �nd an equilibrium state of this game. Mean Field Games are limit versions of stochastic di�erential games
where the number of players tends to in�nity, the individual in�uence of a player's decision becomes in�nitesimal
and only the mean �eld of players has in�uence on the system.

1.2 State of the art on Mean Field Games and their applications in Finance

The Mean Field Game theory was introduced by the parallel works of Lasry and Lions [35] and of Huang,
Caines and Malhame [31], they show that the problem can be represented by a system of coupled Hamilton-Jacobi-
Bellman and Fokker-Planck equations. Lions then introduced the concept of master equation in his lectures at
the College de France [11]. Carmona and Delarue provide a probabilistic analysis of Mean Field Games in [15],
showing that the solution of MFG are solution of forward-backward stochastic di�erential equations on McKean-
Vlasov type. Bensoussan, Frehse and Yam [8] show the master equation of MFG in a stochastic framework and
using the concept of representative agent optimizing against a distribution rather than taking the limit in a �nite
di�erential game as Lasry �rst introduced it. This is the main approach we will use in our work. Achdou and
Capuzzo-Dolcetta [1] provide a numerical scheme to solve the system . Bensoussan et al. [9] shows existence and
uniqueness of an equilibrium strategy in the linear-quadratic framework. Bardi [5] provides explicit solutions to
some of these linear-quadratic MFG.

Mean Field Games are used in many �elds, and especially in economics and �nance. Graber [28] applies it to
production of an exhaustible resource. Carmona et al. [18] uses the theory to model systematic risk by incorporating
a game feature where each bank controls its rate of borrowing/lending to a central bank. Alasseur et al. [2] work on
optimal electricity storage in smart-grid. Gomes and Saude [26] and Bagagiolo and Bauso [4] also on price formation
in electricity market. Cardaliaguet and Lehalle [13] applied the theory to optimal liquidation. Then Lehalle and
Mouzouni [37] extended it to portfolio of correlated assets. The articles of Alasseur and Cardaliaguet are our main
inspirations for our work. Their work are actually similar because optimal storage management of gas or power can
be seen as optimal liquidation starting from an empty storage.

Guo et al. [29], Hadikhanloo [30] and Cardaliaguet [12] worked on learning in Mean Field Games. Learning in
game theory is the study of of dynamics of players that plays the same game repeatedly and adapt their strategies
to others', similar to �ctitious play. In the article of Cardaliaguet and Lehalle [13], they use learning for repeated
day of trading.

Douglas et al. [23], Milstein et al. [40], Ludwig et al. [38], Carmona et al. [14], Ma et al. [39] and Delarue et

IST Quantitative Analytics 4 of 86 September 24, 2019
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1 INTRODUCTION 5

al. [22] study the the systems of forward-backward stochastic di�erential equation and provide numerical schemes
to solve them. This can be used for the FBSDE of the mean-�eld games.
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Mean Field Game Theory for Gas Storage Valuation - BP Con�dential

2 Gas storage

2.1 Introduction, Purposes and Notations

As a commodity, natural gas prices are subject to time and spatial variations. Gas storage is one among several
ways to capture the time variations.

Natural gas can be stored in underground facilities when demand is low and withdrawn when it is high. Because
gas production is less �exible than demand, gas storages play an important role to give extra supply when there
is an unexpected peak of demand (unseasonal weather, unpredicted plant disruption, political decisions ...) or to
build stocks in the opposite case.

Now storage facilities are also used as �nancial instruments to use the predicted seasonal variations for trading
purposes. That means a �nancial contract is sell to a customer to give him the option to inject or withdraw gas
every day until the maturity. A gas storage facility is subject to physical constraints that are essentially limited
injection and withdrawal rates, volume dependent (and sometimes time dependent) injection and withdrawal rates
and a maximum storage capacity. There exist several kinds of gas storage facilities and the constraints depends on
these types (salt caverns, depleted �elds, ...).

Cost of injection and withdrawal are also associated to gas storage as there are cost to run the facility (to pump
the gas in or out, plus the operating costs) which will need to be included in the valuation.

A company who owns gas storages is interested in tools to value these assets and operate them optimally.

Alongside with this physical de�nition, we can also consider purely �nancial storage contract. They replicate a
physical gas storage but with greater �exibility for constraints. For example, it is possible to consider only constant
injection or withdrawal rates which is not the case in the "real" world. For instance, a gas storage owner may sell
some or all of its physical capacity to a counterparty in a standard contract with simple constraints. Gas storage
can also be used to provide gas to utilities counterparty operating CCGT (Cycle Combined Gas Turbine). Those
participants are capable to produce power when power price spikes and need to guarantee their gas supply. These
gas-�red power plants are aimed to be run during peak-hours creating a higher demand for gas and subsequently
higher gas price. As a result they seek to buy gas at a �xed price to produce power and sell it at a high price. Thus
they are interested in buying swing contracts. A storage owner can sell such a swing and hedge it with its storage
asset.

We will use the following notations in the whole document if not stated otherwise.

Gas Storage Properties

cI Cost of injection (/MWh)
cW Cost of withdrawal (/MWh)
αt Rate of injection/withdrawal at time t
Imax Maximum injection rate
Wmax Maximum withdrawal rate
Smax Storage facility capacity
S0 Initial volume
Sfmax Final volume upper bound (0 in a standard storage contract contract)

Sfmin Final volume lower bound (0 in a standard storage contract)
St Current volume at time t
T Maturity

If Sfmax = Sfmin, then we simplify our notations by de�ning Sf = Sfmax = Sfmin. Usually a storage contract starts
with an initial volume equal to 0 and the gas left in stock at the end is lost and may result in penalties in some
case. However, for swing options the contracts allow a certain �exibility. Furthermore, it is useful to be able to
price a gas storage given a speci�c volume as it is required if we want to value it during its delivery period.

For the illustrations, we use the following values :

IST Quantitative Analytics 6 of 86 September 24, 2019
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2 GAS STORAGE 7

Imax 8.197 MMBtu/day
Wmax 16.394 MMBtu/day
Smax 1000000 MMBtu
Step 12
Injection per month 98.364 MMBtu
Sf 0
T 1

The maximum daily injection and withdrawal rates Imax = Imax(t, V ) and Wmax = Wmax(t, V ) are volume
dependent : the more �lled the storage is, the slower the injection is. These non linear pro�les are called injection
(resp. withdrawal) ratchets. In this document we will only consider constant ratchets.

2.2 Intrinsic valuation

The Lacima group published two articles about intrinsic valuations : [33], [34].

The intrinsic value of a natural gas storage is computed using only the current value of the traded futures
contracts. Thus it is the maximum value that can be obtained by hedging the storage given the current forward
curves. The hedging strategy is implemented at time 0 and no more actions need to be done afterwards.

This method gives a lower bound on the price of the contract. Also there is no randomness, in fact it is the
0 -volatility solution.

We suppose the cost of injection (and withdrawal) is linear in α. Once the forward curves are given, we need to
solve the optimization problem

max
α

∑
t

−(αt)+(Ft + cI) + (αt)−(Ft − cW ) (1)

with the constraints 
∀t, (αt)+ ≤ Imax

∀t, (αt)− ≤Wmax

∀t, St ∈ [0, Smax]

ST ∈ [Sfmin, S
f
max]

(2)

This optimization problem can be solved using linear programming.

A particularity of this strategy is we lock the positions from the beginning we will have to take. We are perfectly
hedged but we cannot adapt to the evolution of forward curves. Thus we only capture the intrinsic value but not
the extrinsic value. (A rolling intrinsic method can be applied to try to bene�t from some of the extrinsic value.)

2.3 Extrinsic valuation

The extrinsic value represents the di�erence between the real value (or premium) of the storage and the intrinsic
value. We often speak about "capturing" the extrinsic value of a gas storage in addition to the locked intrinsic
value for instance. In the following paragraphs we look at several ways of computing the real value, i.e. the sum of
intrinsic and extrinsic values.

Real valuation of the storage also implies an associated hedging strategy which, unlike the intrinsic value strategy,
is run through the whole storage activity period.

2.3.1 Basket of Spread options

The idea is very similar to the intrinsic valuation and there is an analogous improvement called the rolling Basket
of Spreads. Storage is represented as a long position in a basket of calendar spread options which are hedged. As
we retrieve the optionality of the storage in the spread option, we are able to capture the real value of the storage
contract. That also means that, unlike intrinsic valuation, the value is not locked at the beginning.
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A calendar spread option can usually be a month calendar spread option but a "daily calendar" spread option
would be more accurate as it would give the opportunity to exercise every day.

Again we can solve this linear program and get the storage premium. We then hedge by injecting/withdrawing
when the spread option is exercised or not.

The Basket of Spread Option o�ers a simple way to get an approximation of the storage value as it is possible to
choose whether to exercise or not. However the volume are �xed at the beginning so there is no possibility to adjust
it through the storage exercise period. This, associated to the fact that ratchets can not be included, are the main
drawbacks of this methods. Furthermore using monthly calendar spread options loses the optionality associated to
the daily exercise.

We are now interested in more general methods that could input all this parameters and �exibility to yield a
closer to reality storage value.

2.3.2 Spot optimization

While the previous strategies rely on taking positions in the forward market, in this approach we model the
value that can be obtained from making daily decisions of the injection and withdrawal of spot gas. This approach
aims to optimize those spot trading decisions to maximise the total discounted revenue over the life of the storage
contract, across all possible price paths. By using an underlying spot price model that is consistent with, and
calibrated to the market forward curve, we ensure that the value obtained is consistent with the forward strategies
described above. In particular, if we consider the case of zero volatility in the spot price this strategy is equivalent
to the intrinsic valuation approach. To valuation is therefore solving a stochastic optimization problem.

De�nition 1 (Payo� gas storage contract)

We introduce the continuous case and corresponding stochastic control equations. We will discretize the problem
in time to solve it using dynamic programming, as the storage is discrete : Since a storage is operated daily or
hourly in reality, it is not an approximation.

In the continuous case, the payo� f at time t during dt is

f(αt, Pt)dt = (−αtPt − cI(αt)+ − cW (αt)−) dt

In the discrete case, the payo� ψ at time tk during ∆tk is

f(αtk , Ptk)∆tk = (−αtkPtk − cI(αtk)+ − cW (αtk)−) ∆tk

De�nition 2 (Gas storage constraints)

Continuous case :

A =

{
(αt)0≤t≤T : −Wmax(t) ≤ αt ≤ Imax(t), ∀t 0 ≤ S0 +

∫ t

0

αsds ≤ Smax, S
f
min ≤ S0 +

∫ T

0

αtdt ≤ Sfmax

}
(3)

Discrete case :

A =

{
(αtk)0≤k≤N−1 : −Wmax(tk) ≤ αtk ≤ Imax(tk), ∀n 0 ≤ S0 +

n−1∑
k=0

αtk∆tk ≤ Smax, S
f
min ≤ S0 +

N−1∑
k=0

αtk∆tk ≤ Sfmax

}
(4)

Remark 1 (Binary exercise)

At a given date tk, the buyer of the storage option has an in�nity of choice as he can choose the amount of
gas he wants to inject withdraw between −Wmax and Imax, i.e. αtk ∈ [−Wmax, Imax]. However, in the case of
constant ratchet (no time dependent neither volume dependent), Bardou et al. [6] proved it is optimal to choose
either to fully inject, fully withdraw or to do nothing. This fact is well known and used among the practitioners.

IST Quantitative Analytics 8 of 86 September 24, 2019
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2 GAS STORAGE 9

2.3.3 Discrete case

We use a time discretization : ∀k = 0, ..,M, tk = T
M k. We take the corresponding A set. We then consider the

discrete storage option whose value at time tk is :

V (tk, Stk , Ptk) = sup
α∈A

E

M−1∑
j=k

f(αtj , Ptj )

∣∣∣∣∣∣Ptk
 (5)

As mentioned earlier, this is not an approximation of the continuous case. In practice, the storage is operated
daily or hourly.

2.3.4 Optimal Stochastic Control, Dynamic Programming Principle and Equation

In this section, we examine the di�erent forms of the general valuation problem, theorems and propositions used
come from Touzi [43].

The standard form of the optimal stochastic control is :

V (t, x) := sup
α∈A

J(t, x, α) (6)

where

J(t, x, α) := E

[∫ T

t

f(s, αs, X
t,x,α
s )ds+ g(Xt,x,α

T )

]
In our particular case, it writes as :

J(t, p, α) := E

[∫ T

t

f(αu, P
t,x
u )du

]

with
f(α, p) = −αp− cI(α)+ − cI(α)−

The valuation problem (5) can be written in the form of a Dynamic Programming Principle(DPP) :

� Terminal condition
V (T, ST , PT ) = 0

� Recurrence : ∀k = 0, .., M − 1,

V (tk, Stk , Ptk) = sup
αtk∈Atk (Stk )

[
f (αtk , Ptk) + E

[
V
(
tk+1, Stk + αtk∆tk , Ptk+1

)
| Ptk

]]
(7)

This allows to compute the premium recursively backward. Because we consider Markovian process, it is easy to
compute the conditional expectation. The most used techniques are Least-Square Monte-Carlo and trees-methods.

Remark 2

For an American call, this writes even simpler :
Terminal condition :

f (PT ) = (PT −K)+

Recurrence : ∀k = 0, .., M − 1,

V (tk, Ptk) = max
(
f (Ptk) ,E

[
V
(
tk+1, Ptk+1

)
| Ptk

])
(8)

We notice it is a particular case of the above DPP (7) where the continuation value corresponds to the no
exercise choice α = 0 and the early payo� to exercising now, i.e. α = 1
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3 Mean Field Games

In this section, we present and summarize most of the Mean Field types of problems in the literature with
sketches of proof for the derivations of some equations. We will not discuss deeply of the notions of existence and
uniqueness of solutions of these problems, we invite the reader to read the articles referenced for each problems for
further proofs and methods of resolution.

3.1 Heuristic derivation of the Mean Field equations

Consider a non cooperative non zero sum game with N identical players with same dynamic, allowed control,
and preferences with their own speci�c noise, the state process X is valued in Rd, the control process α belongs to
a set of admissible process A and is valued in A ⊂ R

q. The players in�uence each others' dynamics and payo�s. dXi
t = b(t,Xi

t , (X
j
t )j 6=i, α

i
t)dt+ σ(t,Xi

t , (X
j
t )j 6=i, α

i
t)dW

i
t

J i0(α1, · · · , αN ) = E

[∫ T
0
f(s,Xi

s, (X
j
s )j 6=i, α

i
s)ds+ g(Xi

T , (X
j
T )j 6=i)

] (9)

Where b and σ are functions from [0, T ] × Rd × (Rd)N−1 × A in Rd and Md,d(R) respectively. f and g are the
payo� functions, they are valued from [0, T ]× Rd × (Rd)N−1 ×A and Rd × (Rd)N−1, respectively, in R.

Solving a game problem has several de�nition. For Mean Field Games, we use the Nash equilibrium concept.
A Nash-equilibrium is α∗ such that ∀i,∀α : J i0(α∗,1, · · · , α∗,i−1, α, α∗,i+1, · · · , α∗,N ) ≤ J i0(α∗,1, · · · , α∗,N ) . That
means that no player has interest to deviate from his strategy.

Mean �eld games are games where the players' total in�uence on the others are not additive but average, so the
dependency on the other players (Xj

t )j 6=i is the dependency in the distribution of the player across the state space
1

N−1Σj 6=iδXjt
(dx)

 dXi
t = b(t,Xi

t ,
1

N − 1
Σj 6=iδXjt

, αit)dt+ σ(t,Xi
t ,

1

N − 1
Σj 6=iδXjt

, αit)dW
i
t

J i0(α1, · · · , αN ) = E

[∫ T
0
f(s,Xi

s,
1

N−1Σj 6=iδXjt
, αis)ds+ g(Xi

T ,
1

N−1Σj 6=iδXjT
)
] (10)


b : [0, T ]× Rd ×M1(Rd)×A −→ R

d

σ : [0, T ]× Rd ×M1(Rd)×A −→ Md,d(R)

f : [0, T ]× Rd ×M1(Rd)×A −→ R

g : Rd ×M1(Rd) −→ R

(11)

When N goes to the in�nity, the discrete distribution of the other players 1
N−1Σj 6=iδXjt

(dx) tend to a continuous

distribution mX
t (dx) which is deterministic in time as the noises of all the player average out in a Fokker-Planck

style equation. Also it implies that the individual in�uence of each player on the others becomes null, only the
mean �eld has in�uence. Note that from now on we will drop the X from the notation of mX .

3.2 Traditional MFG

What follows is mainly inspired by the P. Cardaliaguet' notes of P.-L. Lions' lecture at College de France.
Analysis and proofs of existence and uniqueness are also provided in these lecture notes.

The distribution (mean �eld) of the states of the players in�uence the state itself and the payo�.

A player maximize its expected payo� while knowing the mean �eld of players and that he has an in�nitesimal
in�uence on the mean �eld.

Solving the problem is �nding (α∗,m) such thatm is the law of X∗, X∗ driven by α∗ and ∀α, J(α,m) ≤ J(α∗,m)

IST Quantitative Analytics 10 of 86 September 24, 2019
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3 MEAN FIELD GAMES 11

De�nition 3 (State dynamic in traditional MFG)

The dynamic of the state of a generic player is :

dXt = b(t,Xt,m(t, ·), αt)dt+ σ(t,Xt,m(t, ·), αt)dWt

The associated Fokker-Planck equation is :

∂tm(t, x)− 1

2
Σi,j∂xixj

(
m(t, x)(σσT )ij(t, x,m(t, ·), αt)

)
+ div (m(t, x)b(t, x,m(t, ·), αt)) = 0

And the Hamiltonian is :

H(t, x, p, γ,m) = supα∈A
1

2
Tr(σσT (t, x,m, α)γ) + b(t, x,m, α).p+ f(t, x,m, α)

A generic player has to solve the following stochastic optimization problem, assuming he knows what will be
the mean �eld m(t, dx) over time :

{
V0(m) = supα∈AJ(α;m)

J(α;m) = E

[∫ T
0
f(s,Xs,m(s), αs)ds+ g(XT ,m(T ))

] (12)

The associated dynamic programming principle problem is :{
v(t, x;m) = supα∈AJ(t, x, α,m)

J(t, x, α;m) = Et,x

[∫ T
t
f(s,Xs,m(s), αs)ds+ g(XT ,m(T ))

] (13)

With the associated Hamilton-Jacobi-Bellman partial di�erential equation system:{
∂tv(t, x) +H(t, x,Dxv(t, x), Dxxv(t, x),m(t)) = 0

v(T, x) = g(x,m(T ))
(14)

Integrating the optimal control, the Fokker-Planck equation system becomes :{
∂tm(t, x)− 1

2
Σi,j∂ij [mDγH(t, x,Dxv(t, x), Dxxv(t, x),m(t))]ij + div [mDpH(t, x,Dxv(t, x), Dxxv(t, x),m(t))] = 0

m(0, x) = m0(x) = Law(X0)
(15)

De�nition 4 (Mean Field Games system of HJB-FP equations)

A Mean Field Game problem is generally described by the following system of equations:
∂tv(t, x) +H(t, x,Dxv(t, x), Dxxv(t, x),m(t)) = 0

∂tm− 1
2Σi,j∂ij [mDγH(t, x,Dxv(t, x), Dxxv(t, x),m(t))]ij + div [mDpH(t, x,Dxv(t, x), Dxxv(t, x),m(t))] = 0

v(T, x) = g(x,m(T ))

m(0, x) = m0 = Law(X0)
(16)

Remark 3 (Fokker-Planck equation)

The Fokker-Planck equation is normally used in physics to describe the probability of presence of a particle
in the space. Here the particles are players that have a control. The fact that there is an "in�nite number" of
players make that the probability of being in a certain state is, by law of large number, the proportion of players
that are in that state.
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Mean Field Game Theory for Gas Storage Valuation - BP Con�dential

De�nition 5 (Master equation)

The game can also be described by the following HJB equation : ∂tU +H(t, x,DxU,DxxU,m) + ∂mU [
1

2

∑
i,j

∂ij(mDγH)− div(mDpH)]

U(T, x,m) = g(x,m)

(17)

After solving the master equation, one can �nd m(t, dx) with :

{
∂tm−

1

2
Σi,j∂ij [mDγH(t, x,DxU(t, x,m), DxxU(t, x,m),m)]ij + div [mDpH(t, x,DxU(t, x,m), DxxU(t, x,m),m)] = 0

m(0, x) = m0(x)
(18)

By setting v(t, x) = U(t, x,m(t)), we re�nd that v and m satis�es the HJB-FP system.

Remark 4

The notation ∂fF [g] designate the Gateaux derivative of a functional with direction g : ∂fF [g](f) = limε→0
F(f+εg)−F(f)

ε .

There is existence of an equilibrium if f and g have regularizing properties (uniform boundedness and Lipschitz
continuity). If in addition f and g are monotonous, the equilibrium is unique. Monotonicity is de�ned as :∫

x

(f(x,m1)− f(x,m2))d(m1(x)−m2(x)) ≥ 0

3.3 Extended Mean Field Game

Gomes and Voskanyan [27] are the �rst to introduce the notion of Extended Mean Field Games, also called
Mean Field Game of Controls. They provide some results of existence and uniqueness of solutions.

In this framework, the distribution of controls µ also also in�uences the dynamic of the players and their reward.

De�nition 6 (State dynamic in extended MFG)

The dynamic of the state of a generic player is :

dXt = b(t,Xt,m(t, ·), αt, µ(t, ·))dt+ σ(t,Xt,m(t, ·), αt, µ(t, ·))dWt

The associated Fokker-Planck equation is :

∂tm(t, x)− 1

2
Σi,j∂ij

(
m(t, x)(σσT )ij(t, x,m(t, ·), αt, µ(t, ·))

)
+ div (m(t, ·)b(t, ·,m(t, ·), αt, µ(t·))) = 0

And the Hamiltonian :

H(t, x, p, γ,m, µ) = supα∈A
1

2
Tr(σσT (t, x,m, α, µ)γ) + b(t, x,m, α, µ).p+ f(t, x,m, α, µ)

Again, the generic player solves the following optimization problem with associated Hamilton-Jacobi-Bellman

IST Quantitative Analytics 12 of 86 September 24, 2019
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3 MEAN FIELD GAMES 13

PDE, assuming they know the distributions m and µ over time :
v(t, x) = supα∈AJ(t, x, α;m,µ)

J(t, x, α;m,µ) = Et,x

[∫ T
t
f(s,Xs,m(s), αs, µ(s))ds+ g(XT ,m(T ))

]
∂tv(t, x) +H(t, x,Dxv(t, x), Dxxv(t, x),m(t), µ(t)) = 0

v(T, x) = g(x,m(T ))

(19)

Plugging the optimal control in the Fokker-Planck equation gives :
∂tm(t, x)− 1

2
Σi,j∂ij [m(t, x)DγH(t, x,Dxv(t, x), Dxxv(t, x),m(t), µ(t))]ij

+div [mDpH(t, x,Dxv(t, x), Dxxv(t, x),m(t), µ(t))] = 0

m(0, x) = m0(x) = Law(X0)

(20)

In addition to the traditional MFG, there is the following equation coupling m amd µ

µ(t) = α∗(t, ·, Dxv(t, ·), Dxxv(t, ·),m(t), µ(t))#m(t, ·)
De�nition 7 (Extended MFG system of HJB-FP equations)

The HJB-FP system of an extended MFG problem is :



∂tv(t, x) +H(t, x,Dxv(t, x), Dxxv(t, x),m(t), µ(t)) = 0

∂tm− 1
2Σi,j∂ij [mDγH(t, x,Dxv(t, x), Dxxv(t, x),m(t), µ(t))]ij + div [mDpH(t, x,Dxv(t, x), Dxxv(t, x),m(t), µ(t))] = 0

µ(t) = α∗(t, ·, Dxv(t, ·), Dxxv(t, ·),m(t), µ(t))#m(t, ·)
v(T, x) = g(x,m(T ))

m(0, x) = m0(x)
(21)

Remark 5

The notation f = h#g means that f(dy) is the distribution of the h(x) ∈ A with the distribution of x ∈ R
d

being g(dx)

De�nition 8 (Master equation)

The game can also be described by the following HJB equation :
∂tU +H(t, x,DxU,DxxU,m, µ) + ∂mU [

1

2

∑
i,j

∂i,j(mDγH)− div(mDpH)]

µ = α∗(t, x,DxU,DxxU,m, µ)#m

U(T, x,m) = g(x,m)

(22)

3.4 Mean Field type Control

Lauriere and Pironneau [36] and Bensoussan et al. [8] provides in their article some understanding of Mean
Field type Control as a traditional stochastic optimization problem, with the master equation being seen a Bellman
equation. Mean Field type Control are also known as Controlled McKean-Vlasov dynamics.

An overseer maximize the common interest. Changing the strategy therefore in�uences the mean �eld since by
symmetry every agents have the same strategy.

Denoting mα the mean �eld for strategy α . The problem is �nding α∗ such that ∀α, J(α,mα) ≤ J(α∗,mα∗){
J(α;m) = E

[∫ T
0
f(s,Xs,m(s), αs)ds+ g(XT ,m(T ))

]
=
∫ T

0

∫
x
f(s, x,m(s), α(s, x))dsm(s, dx) +

∫
x
g(x,m(T ))m(T, dx)

(23)
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Mean Field Game Theory for Gas Storage Valuation - BP Con�dential

The di�erence with Mean Field Games is that, while no player has interest in deviating from its strategy to
maximize his personal interest, they could cooperate to maximize the common interest. We cannot assume that
we know the mean �eld and then �nd the optimal control corresponding to this means �eld because here the mean
�eld depend on the control set by the overseer. The problem is maximizing the functional :

{
Ĵ(α) = J(α;mα) = E

[∫ T
0
f(s,Xs,m

α(s), αs)ds+ g(XT ,m
α(T ))

]
=
∫ T

0

∫
x
f(s, x,mα(s), α(s, x))dsmα(s, dx) +

∫
x
g(x,mα(T ))mα(T, dx)

(24)

One can use the Gateaux derivative and �nd α(t, s) such that the derivative is null for any direction.

Another method is to use dynamic programming : Ĵ(t,m;α) = E

[∫ T

t

∫
x

f(s, x,mα(s), α(s, x))mα(s, dx)ds+

∫
x

g(x,mα(T ))mα(T, dx)

∣∣∣∣∣mα
t = m

]
V (t,m) = supα Ĵ(t,m;α)

(25)

The HJB equation for V is

 ∂tV + sup
α
∂mV [

1

2

∑
i,j

∂ij(m(x)(σσT )ij(t, x,m, α(x)))− div(m(x)b(t, x,m, α(x)))] +

∫
x

f(t, x,m, α(x))m(dx) = 0

V (T,m) =
∫
x
g(x,m)m(dx)

(26)

By the Riesz representation theoreme ∃ U : (t, x,m)→ U(t, x,m) s.t. ∂mV [m̃](t,m) =
∫
x
U(t, x,m)m̃(dx). We

usually note U = δmV . With an integration by part we can rewrite the HJB equation as :

 ∂tV + sup
α

∫
x

∂xUDxb(t, x,m, α(t, x) +
1

2
Tr(DxxUσσ

T (t, x,m, α(t, x)))m(dx) +

∫
x

f(t, x,m, α(x))m(dx) = 0

V (T,m) =
∫
x
g(x,m)m(dx)

(27)
and since the optimization can be done inside the integral : ∂tV +

∫
x

H(t, x,DxU,DxxU,m)m(dx) = 0

V (T,m) =
∫
x
g(x,m)m(dx)

(28)

Taking the derivative with respect to m we get the master equation of MFTC : ∂tU +

∫
x

δm(H(t, x,DxU(t, x,m), DxxU(t, x,m),m))m(dx) +H(t, x,Dx, DxxU,m) = 0

U(T, x,m) =
∫
x
δmg(x,m)m(dx) + g(x,m)

(29)

3.5 Mean Field Planning Problem

Orrieri et al. [41] provide a study of Mean Field Planning Problems and are able to prove existence and uniqueness
in some cases.

The problem here is to move a distribution to another while maximizing the revenue of the agents. This is a
problem of optimal transport.

IST Quantitative Analytics 14 of 86 September 24, 2019
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3 MEAN FIELD GAMES 15

De�nition 9 (HJB-FP system of MFPP)

The HJB-FP system of this kind of problem is :
∂tv(t, x) +H(t, x,Dxv(t, x), Dxxv(t, x),m(t)) = 0

∂tm− 1
2Σi,j∂ij [mDγH(t, x,Dxv(t, x), Dxxv(t, x),m(t))ij ] + div [mDpH(t, x,Dxv(t, x), Dxxv(t, x),m(t))] = 0

m(0, x) = m0(x),m(T, x) = mT (x)

(30)

3.6 MFG with common noise

Carmona et al. [17] develop a theory of existence and uniqueness of solutions for Mean Field Games with
common noise. In [16] Carmona and Delarue exhibit the master equation for these kinds of problems. Kolokoltsov
and Troeva [32] and Firoozi et al. [24] provide further results on games with common noise.

In the previous types of problem, the randomness was speci�c to each player and therefore disappeared in the
mean �eld. In the MFG with common noise type of problems, there is a systematic additional noise that drive the
dynamic of the players.

dXt = b(t,Xt,mt, αt)dt+ σ(t,Xt,mt, αt)dWt + σ̃(t,Xt,mt, αt)dBt

Here mt denote the process (Law(Xt|Bs, 0 ≤ s ≤ t))t. Because the distribution of the players over time is now
also driven by a Brownian motion, it is a stochastic process adapted to the �ltration of the common noise. It is
important to note that the process is valued in the space of distribution on Rd.

The Fokker-Planck equation becomes a stochastic di�erential equation : dmt(x) =

(
1

2
Σi,j∂ij

[
(σσT + σ̃σ̃T )ij(t, x,mt, αt)mt(x)

]
− div [b(t, x,mt, αt)mt(x)]

)
dt− div[σ̃ (t, x,mt, α)mt(x)] dBt

m0 = Law(X0)
(31)

The problem is �nding (α∗,m) such that m is the law of X∗ knowing B, X∗ driven by α∗ and ∀α, J(α,m) ≤
J(α∗,m).

One can �nd a stochastic HJB equation coupled with the Fokker-Planck equation similarly to the classic MFG
case. This leads to a system of coupled in�nite dimensional forward-backward stochastic partial di�erential equa-
tions. The solution HJB backward equation can be represented by a deterministic function of the forward process
solution of the FP equation. This function is called decoupling �eld and is solution of a master equation.

MFG with common noise is the framework we will mostly work in as in the gas storage problem, the price is
common to every agents and the dynamic of the price is driven by a Brownian motion.

3.7 MFG with a major player

Bensoussan et al. [7] provide a general theory and results of existence and uniqueness of equilibrium in certain
cases.

The di�erence with traditional Mean Field Games is that there is one player of which in�uence cannot be
neglected, denoting by X0 and α0 its state and control :{

dX0
t = b0(t,X0

t ,mt, α
0
t )dt+ σ0(t,X0

t ,mt, α
0
t )dW

0
t

dXt = b(t,Xt, X
0
t ,mt, αt, α

0
t )dt+ σ(t,Xt, X

0
t ,mt, αt, α

0
t )dWt

(32)

Here mt denote the process (Law(Xt|W 0
s , 0 ≤ s ≤ t))t. It follows the following SDE :

 dmt(x) =

(
1

2
Σi,j∂xi,xj

[
(σσT )ij(t, x,X

0
t ,mt, αt, α

0
t )mt(x)

]
− div

[
b(t, x,X0

t ,mt, αt, α
0
t )mt(x)

])
dt

m0 = Law(X0)
(33)



IS
T
_
Q
u
a
n
ti
ta
ti
v
e_

A
n
al
y
ti
cs
_
In
te
ll
ec
tu
a
l_
P
ro
p
er
ty

Mean Field Game Theory for Gas Storage Valuation - BP Con�dential

The generic player has the following reward function, depending on its strategy, the one of major player, and
the mean �eld :

J(α, α0,m) = E

[∫ T

0

f(s,Xs,ms, αs, α
0
s)ds+ g(XT , X

0
T ,mT )

]

The major player has the following reward function, depending on its strategy and the mean �eld :

J0(α0,m) = E

[∫ T

0

f0(s,X0
s ,ms, α

0
s)ds+ g0(X0

T ,mT )

]

Suppose that for any strategy of the major player α0 there exists a mean �eld m̃α0

which is a Nash equilibrium
for the other players : m̃α0

is the mean �eld for a strategy α∗ such that ∀α, J(α, α0, m̃α0

) ≤ J(α∗, α0, m̃α0

)

Solving the problem is �nding (α0∗) such that ∀α0, J0(α0, m̃α0

) ≤ J0(α0∗, m̃α0∗
)

In other terms, the problem is : �rst given the strategy of the major player and a mean �eld to �nd the optimal
strategy for a representative player; second to �nd, given this major player strategy, the mean �eld equilibrium,
then last to �nd the major player strategy that maximizes his interest while knowing that the mean �eld depends
on his strategy.

Remark 6

MFG, MFC, MFPP can be traditional or extended, with our without common noise, with or without a major
player.

Remark 7

One can imagine problems where players are asymmetric, that is not all players have the same state dynamic
and payo� function. Actually those problems are just speci�c cases of the general problems described above,
as one can say that the player's type is part of the state variable. The dynamic and payo� being the same for
everyone but now also depends on this additional state variable, therefore having a symmetric system.

IST Quantitative Analytics 16 of 86 September 24, 2019
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4 SPOT OPTIMIZATION IN A MEAN FIELD GAME 17

4 Spot optimization in a Mean Field Game

4.1 Description of the problem and assumptions

4.1.1 Reward functions and simplifying assumption

A game typically plays for one year T = 1. As we have seen before, there are constraints on the volume inside
a gas storage and it must be emptied at the end of the year. The injection and withdrawal rates are bounded,
boundaries can depend on the level of the storage. There are additional costs to the price paid when injecting or
withdrawing, depending on the level of the storage, and the rate of injection/ withdrawal.

We'll mainly use a linear-quadratic framework in order to have existence and uniqueness of an equilibrium (see
Bensoussan et al. [9] and Bardi [5]), as well as possible explicit simple solutions. Instead of having hard boundaries
on the inventory and rate, there are linear-quadratic penalizations for abnormal values of inventory and control.

4.1.2 Mean �eld dimension of the problem

The mean �eld modelling comes through the mean of the injection/withdrawal rates thus we fall under the
Extended Mean Field Game type. The framework is that it is the average sum of the injection rates that plays
on the dynamic of the price and/or the e�ective paid price, representing a market impact and/or the price being
function of the demand. We will present and discuss several price models inspired from traditional ones.

We denote by µ̄t the average sum of controls at time t , µ̄t =
∫
αµt(dα). Also the dynamic of the inventory

is : dSt = αtdt. There is no noise speci�c to each player but there a common noise on the price so we work on
the Extended Mean Field Game with common noise framework. Also there is obviously only one price common to
every player. It can be seen as the state variable of the players are composed by their inventory and price, but the
initial marginal distribution in price is a Dirac, and since the dynamic of the price does not involve idiosyncratic
noise or control the distribution of the price across the player remains a Dirac through time.

dmt(s, p) = (−∂p(mtbP )− ∂s(mtαt)) dt− ∂p(mtσP )dWt

m0(s, p) = m0(s)δp0
(p) which can be integrated on the price variable to obtain the marginal distribution of inven-

tories of which the dynamic is
dmt(s) = −∂s(mtαt)dt (34)

Remark 8 (Further assumptions)

We will work assuming that every agent has the same preferences (reward functions) to have simple equations,
but the problem is also totally solvable if there is a distribution of preferences across the agents. The thing is
that the problem in itself assume that every player can observe the distribution of inventories at any time and
the preferences of the other players and know that all other players can as well.

We also �rst assume the every agents have the same price model. In the same way is possible to solve the
problem with di�erent price model among the players but it at least need to assume that " every player knows
the models used by the other players and knows that every other player also know all the models " .

We'll see later that in the learning framework, we do not need those assumptions.

4.2 Market impact

In the general case we assume that the mean �eld only plays on the drift of the price

dPt = bP (t, Pt, µ̄t)dt+ σP (t, Pt)dWt
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Mean Field Game Theory for Gas Storage Valuation - BP Con�dential

4.2.1 Reward function

De�nition 10 (Reward function)

A = {adapted process valued in A} , A = R

J(α, µ) = E


∫ T

0

−Ptαt︸ ︷︷ ︸
(1)

−C
2
α2
t︸ ︷︷ ︸

(2)

+ A1St︸ ︷︷ ︸
(3)

−A2

2
S2
t︸ ︷︷ ︸

(4)

 dt + PTST︸ ︷︷ ︸
(5.1)

−B
2
S2
T︸ ︷︷ ︸

(5.2)︸ ︷︷ ︸
(5)


(35)

(1) corresponds to the price paid/received for the injection/withdrawal between t and t+ dt
(2) is the cost of operations, it can also be seen as a cost of liquidity. It also replace the constraint of boundedness
of the injection rate by penalizing too big injection rate
(3) is a term penalize the player for having a negative inventory, replacing the hard constraint of positivity
(4) is a term that penalize the player for having a too big inventory, replacing the hard constraint of maximum
inventory
(5) we replace the hard constraint of empty storage at maturity with the assumption that the player can sell all
he has left in stock at once (5.1) but with a quadratic cost of liquidity (5.2), also the greater B is, the more the
player is encouraged to have a null inventory at maturity. The term (5.1) allows to have explicit solution in the
Bachelier case

The rate of injection and inventory variable are no longer bounded.

Remark 9

On the terminal payo� g, one could also write ST (PT − B1ET − B2

2 ST ) where ET denotes the mean of the
inventories of all the players at T . The term −B1ETST being a liquidity cost, it rewards the player for having
to sell while the mean of the players have to buy.

4.2.2 Bachelier market impact

dPt = (f0(t) + νµ̄t) dt+ σdWt

f0 is an anticipated seasonality
It is the most simple market impact model, with soft constraints it even has a deterministic explicit solution.

4.2.3 Black-Scholes market impact

dPt
Pt

= (f0(t) + νµ̄t) dt+ σdWt

f0 is an anticipated seasonality
Black-Scholes without market impact is the most known price model in �nance, this is why it is interesting to have
market impact price model derived from it.

4.2.4 Clewlow-Strickland (1 factor) market impact

We assume that the dynamic of the forward contract is :

dFt,T
Ft,T

= σe−a(T−t)dWt + νe−a(T−t)µ̄tdt

Then Ft,T = F0(T ) exp
(
e−aT

(
σ
∫ t

0
easdWs + ν

∫ t
0
easµ̄sds

)
− σ2

4a e
−2aT (e2at − 1)

)
. And the dynamic of Pt =

Ft,t is therefore:
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4 SPOT OPTIMIZATION IN A MEAN FIELD GAME 19

dPt
Pt

=

(
F ′0(t)

F0(t)
+ a (ln(F0(t))− ln(Pt)) +

σ2

4
(1− exp(−2at)) + νµ̄t

)
dt+ σdWt

t→ F0(t) is the forward curve at 0

Clewlow-Strickland without market impact is a model commonly use for commodities (see [20]). We should
therefore aim to use market impact model derived from it.

4.3 Price is a function the demand

The demand is the sum of the average control of the players and an exogenous demand process Qt which
represents the demand of the rest of the world, the demand is algebraic. The rest of the world can be seen as agents
that uses a 'classic' price model, or that do not �t in the storage model due to di�erent kind of reward functions
such as household or governments.

The price for a demand Qt + µ̄t is a deterministic function P of that demand.

4.3.1 Reward functions

{ A = {adapted process valued in A} , A = R

J(α, µ) = E

[∫ T
0

[
−P (Qt + µ̄t)αt − C

2 α
2
t +A1St − A2

2 S
2
t

]
dt+ P (QT )ST − B

2 S
2
T

] (36)

The reward function has the same structure than the market impact price models. The liquidation price at T is
not well de�ned. We arbitrarily kept and wrote the term (5.1) like this but one can remove or change it, this term
is exogenous so his presence does not impact the solvability of the problem.

4.3.2 Exogenous demand and price function

We use an exogenous demand process :{
dQt = bQ(t, Qt)dt+ σQ(t, Qt)dWt

Q0 = q0

A good modelling of this process would be an Ornstein-Uhlenbeck process with seasonal trend. For the inverse
demand price function an a�ne price is a good compromise between realism and convenience for calculus.

P (q) = p0 + p1q

4.4 General price model

More generally, one can describe the price paid by the players at a certain time as a function of a process and
µ̄ : 

Pt = P (t,Xt, µ̄t)

PT = P̃ (XT )

P : [0, T [×Rd × R −→ R

P̃ : Rd −→ R

dXt = b(t,Xt, µ̄t)dt+ σ(t,Xt, µ̄t)dWt

X0 ∈ Rd

(37)
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Mean Field Game Theory for Gas Storage Valuation - BP Con�dential

The reward function being

J(α, µ) = E

[∫ T

0

[
−P (t,Xt, µ̄t)αt −

C

2
α2
t +A1St −

A2

2
S2
t

]
dt+ P̃ (XT )ST −

B

2
S2
T

]

The previous cases falling under this general model :

Market impact 
P (t,Xt, µ̄t) = Xt

P̃ (XT ) = XT

dXt = bP (t,Xt, µ̄t)dt+ σP (t,Xt)dWt

X0 = P0 ∈ R

(38)

Price is function of demand 
P (t,Xt, µ̄t) = p0 + p1(Xt + µ̄t)

P̃ (XT ) = p0 + p1(XT )

dXt = bQ(t,Xt)dt+ σQ(t,Xt)dWt

X0 = Q0 ∈ R

(39)
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5 SYSTEM EQUATION AND RESOLUTION 21

5 System equation and resolution

5.1 Market impact models

This model is greatly inspired by the work of Cardaliaguet and Lehalle [13] on optimal liquidation in a Mean
Field Game. Their work is it self an evolution of the work of Almgren and Chriss [3]. Our inspiration comes from
the fact that optimal strategies for a storage can be seen as optimal liquidation starting from a null inventory, the
added seasonality in the price model is what makes the players buy and sell.

5.1.1 Derivation of the equations

We are in the Mean Field Game with common noise type so we cannot use the dynamic programming principle
as we would do in a 'classic' price model since the mean �eld m is not deterministic. We can however consider it is
itself a state variable and use the dynamic programming principle. For now the average control µ is some adapted
process, will use the corresponding equation to determine it.

J(t, s, p,m;α, µ) = Et,s,p,m

[∫ T

t

(−αsPs −
C

2
α2
s +A1Ss −

A2

2
S2
s )ds+ PTST −

B

2
S2
T

]

Et,s,p,m[·] means E[·|St = s, Pt = s,mt = m]

Denoting v(t, s, p,m;µ) = supα∈A J(t, s, p,m;α, µ) , the dynamic programming principle gives :

 ∂tv +
1

2
σ2
P (t, p)∂ppv + bP (t, s, µ̄t)∂P v + sup

α∈R

[
α∂sv − αp−

C

2
α2

]
+A1s−A2

s2

2
+ ∂mv[−∂s(mα̃)] = 0

v(T, s, p,m) = ps− B
2 s

2

We therefore have the control α̃(t, s, p,m, µ) = ∂sv(t,s,p,m,µ)−p
C

Remark 10

m normally designates the process of density of the state of players, but by abuse of notation it also designates
generic density argument of the functional v.

 ∂tv +
1

2
σ2
P (t, p)∂ppv + bP (t, s, µ̄t)∂P v +

(∂sv − p)2

2C
+A1s−A2

s2

2
+ ∂mv[−∂s(m

∂sv − p
C

)] = 0

v(T, p, s) = ps− B
2 s

2
(40)

From now on we stop writing the dependency in µ for ease of notation. We assume the following separation of
variables :

v(t, s, p,m) = h0(t, p,m) + (p+ h1(t, p,m))s− h2(t, p,m)
s2

2

We therefore have the following system of equation :
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Mean Field Game Theory for Gas Storage Valuation - BP Con�dential


∂th2 +

1

2
σ2
P (t, p)∂pph2 + bP (t, s, µ̄t)∂Ph2 −

h2
2

C
+A2 + ∂mh2[−∂s

(
m
h1 − sh2

C

)
] = 0

∂th1 + 1
2σ

2
P (t, p)∂pph1 + bP (t, s, µ̄t)(1 + ∂Ph1)− h1h2

C +A1 + ∂mh1[−∂s
(
mh1−sh2

C

)
] = 0

∂th0 + 1
2σ

2
P (t, p)∂pph0 + bP (t, s, µ̄t)∂Ph0 +

h2
1

2C + ∂mh0[−∂s
(
mh1−sh2

C

)
] = 0

h2(T ) = B, h1(T ) = h0(T ) = 0

(41)

The �rst equation can be solve by assuming that h2(t, p,m) = h2(t) h′2 −
h2

2

C
+A2 = 0

h(T ) = B

Which is a Riccati equation that can be solved by writing :
h′2

h2
2−A2C

= 1
C then

h′2
h2−
√
A2C
− h′2

h2+
√
A2C

= 2
√

A2

C

which can be integrated setting ρ =
√

A2

C in ln
(
h2(t)−ρC
h2(t)+ρC

)
= 2ρ(t − T ) + ln

(
B−ρC
B+ρC

)
which is, by setting c2 =

B−ρC
B+ρC exp(−2ρT )

h2(t) = ρC
1 + c2 exp(2ρt)

1− c2 exp(2ρt)
(42)

We recall that the control is

α(t, s, p,m, µ) =
h1(t, p,m, µ)− h2(t)s

C
The average control therefore satis�es this equation

µ̄t =

∫
s

α(t, St, Pt,mt, µ)mt(ds) =
h1(t, Pt,mt, µ)− h2(t)

∫
s
smt(ds)

C

Denoting by Et the average inventory of the players, the average control is :

µ̄t =
h1(t, Pt,mt, µ)− h2(t)Et

C

The process Et =
∫
smt(ds) satisfy the following SDE :

dEt =
∫
sdmt(ds) = −

∫
s∂s(mt

h1(t,Pt,mt,µ)−h2(t)s
C )dt = h1(t,Pt,mt,µ)−h2(t)Et

C dt = µ̄tdt
by integration by part.

A stylizing fact is that
d(St − Et) = −h2(t)(St − Et)dt

This shows that the players will try to have their inventory equal to the mean of the inventories, if it is not originally
the case. This also shows that, assuming that the majority of the players are doing the best strategy, the best thing
to do is following the crowd.

We can assume that the dependency of h1 and h0 in m is only through the mean of m , therefore :

 ∂th1 +
1

2
σ2
P∂pph1 + (1 + ∂ph1)bP

(
t, p,

h1(t, p, e)− eh2(t)

C

)
− h1h2

C
+A1 + ∂eh1

h1 − eh2

C
= 0

h1(T, p, e) = 0
(43)

It is associated with the following Forward-Backward stochastic di�erential equation :
dPt = bP

(
t, Pt,

Ht − EtH2(t)

C

)
dt+ σ(t, Pt)dWt

dEt = Ht−h2(t)Et
C dt

dHt =
(
Hth2(t)

C −A1 − bP
(
t, Pt,

Ht−h2(t)Et
C

))
dt+ ZtdWt

HT = 0

(44)
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5 SYSTEM EQUATION AND RESOLUTION 23

Ht = h1(t, Pt, Et) being the solution of the FBSDE is equivalent to h1 being the solution of the PDE. Also

h0(t, Pt, Et) = H0
t = Et

[∫ T
t

(Hu)2

2C du
]
.

From now on until the end of the document, we use µt to instead designate the mean of the controls as in this
framework we do not need the entire distribution of controls.

5.1.2 Analytical solution in Bachelier case

Until now the resolution was common for every market impact price model. The a�ne control in the inventory
is a result of the linear-quadratic framework. The average control µt is therefore the control of a player with the
average inventory, thus easily simplifying the research of the �x point from an in�nite dimension to a one dimension
search. The distribution of inventories mt only need to be accounted through its mean Et.

We will focus on the case of the Bachelier price model where there is an explicit solution.

dPt = bP

(
t, Pt,

Ht − EtH2(t)

C

)
dt+ σ(t, Pt)dWt

dEt = Ht−h2(t)Et
C dt

dHt =
(
Hth2(t)

C −A1 − f0(t)− νHt−h2(t)Et
C

)
dt+ ZtdWt

HT = 0

(45)

Writing Et = E(t) and Ht = h1(t) gives the ODE system :


h′1 + f0(t) + ν

h1(t)− E(t)h2(t)

C
− h1h2

C
+A1+ = 0

E′(t) = h1(t)−E(t)h2(t)
C

E(0) = E0, h1(T ) = 0

(46)

We therefore have :

E′′ =
−A1 + h1h2

C − (f0 + ν h1−Eh2

C )− E′h2 − Eh′2
C

=⇒ CE′′ = −A1 − f0 + E
h2

2

C
− νE′(t)− Eh′2

(47)

Using the di�erential equation on h2 we get the �nal system :
CE′′ + νE′ −A2E = −A1 − f0

h1 = CE′ + Eh2

E(0) = E0, CE
′(T ) +BE(T ) = 0

(48)

As it is an inhomogeneous second order linear ordinary di�erential equation, the solution is easily numerically
computable, if not explicit, depending on the form of the seasonality f0.

The price is therefore Pt = P0 +
∫ t

0
f0(u)du + ν(E(t) − E0) + σWt and h0(t) =

∫ T
t
h2

1(s)ds

2C is the solution of its

related equation. The inventory of generic player is S(t) = E(t) + (S0 − E0) exp
(
−
∫ t

0
h2(u)
C du

)
. The expected

gain of a player at time t is therefore v(t, St, Pt) = h0(t) + (Pt + h1(t))St − h2(t)
S2
t

2 .

5.1.3 Numerical results

For the numerical results, we take the seasonality of the form :

f0(t) = Kcos(2πt+ φ)
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Mean Field Game Theory for Gas Storage Valuation - BP Con�dential

We chose the following set of parameters, (with the Bachelier model, the results do not depend on the volatility so
one can take whichever value they want for σ) :

T = 1, A1 = 5, A2 = 5, B = 10, C = 1, P0 = 100, E0 = 0, K = 30, φ =
3π

4
, ν = 6

Figure 5.1: h2(t)

This is the shape of h2, the more we approach maturity the more the players they have interest in having a null
inventory.

Figure 5.2: E(t)

IST Quantitative Analytics 24 of 86 September 24, 2019
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5 SYSTEM EQUATION AND RESOLUTION 25

Figure 5.3: E′(t)

On these �gures, we have plotted the pro�le of injection of the average player in the Mean Field Game model
and in the 'classic' case that is ν = 0. We can see how the players in the MFG tend to buy and sell earlier than if
there was no market impact.

Figure 5.4: St of players with di�erent initial inventories

On this �gure we've simulated 30 players' trajectories with di�erent starting inventories, and plotted the tra-
jectory of the average inventory of the players. We can seen how their trajectories converge toward the average
inventory.
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Mean Field Game Theory for Gas Storage Valuation - BP Con�dential

Figure 5.5: Pt with and without market impact

On this �gure we can see the resulting price trajectory with the market impact compared with what the trajectory
would have been without market impact.

5.2 Price function of demand model

This model comes from the work of Alasseur et al. [2]. They use the same linear quadratic model for the storage
than Cardaliaguet and Lehalle. Their model is applied to power storage in smart grid.

5.2.1 Derivation of the equations

We will show and use another approach to solve the problem but both approaches are interchangeable.

J(α, µ) = E

[∫ T

0

(−αtP (Qt + µt)−
C

2
α2
t +A1St −

A2

2
S2
t )dt+ P (QT )ST −

B

2
S2
T

]

We use the Gateaux di�erentiate to �nd the optimal control.

dβJ(α, µ) = E

[∫ T
0

(−βtP (Qt + µt)− Cαtβt +A1S
β
t −A2StS

β
t )dt+ P (QT )SβT −BSTS

β
T

]
with Sβt =

∫ t
0
βsds

Let Y be the solution of the following backward-stochastic di�erential equation :{
dYt = −(A1 −A2St)dt+ ZtdWt

YT = P (QT )−BST
(49)

by the Ito lemma we have :

dβJ(α, µ) = E

[∫ T

0

(−P (Qt + µt)− Cαt + Yt)βtdt

]

If α is optimal the Gateaux di�erentiate is null for any β which give the following coupling equation :
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5 SYSTEM EQUATION AND RESOLUTION 27

αt =
Yt − P (Qt + µt)

C

µt is given by the following equation :

µt =

∫
α(t, s,Qt, Et)mt(ds)

µt =
Ȳt − P (Qt + µt)

C

(50)

The system is therefore :



dQt = bQ(t, Qt)dt+ σ(t, Qt)dWt

dSt = Yt−P (Qt+µt)
C dt

dYt = −(A1 −A2St)dt+ ZtdWt

YT = P (QT )−BST
dEt = Ȳt−P (Qt+µt)

C dt

dȲt = −(A1 −A2Et)dt+ ZtdWt

ȲT = P (QT )−BET
µt = Ȳt−P (Qt+µt)

C

(51)

5.2.2 Analytical solution in a�ne price function

A natural price function is to take :
P (q) = p0 + p1q

Which gives :

µt =
Ȳt − P (Qt)

C + p1

Assuming Ȳt = P (Qt) + H̄t − h̄2(t)Et , we have :

dȲt = dH̄t +

(
p1bQ(t, Qt)− h̄2

′
(t)Et − h2

H̄t − h̄2(t)Et
C + p1

)
dt

= −(A1 −A2Et)dt+ ZtdWt

(52)

Taking h̄2 satisfying :  h̄2
′ − h̄2

2

C + p1
+A2 = 0

h̄2(T ) = B

h̄2(t) = ρ̄(C + p1)
1 + c̄2 exp(2ρ̄t)

1− c̄2 exp(2ρ̄t)
(53)

With ρ̄ =
√

A2

C+p1
and c̄2 = B−ρ̄(C+p1)

B+ρ̄(C+p1) exp(−2ρ̄T ) we have

 dH̄t =

(
h̄2(t)H̄t

C + p1
−A1 − p1bQ(t, Qt)

)
dt+ ZtdWt

H̄T = 0
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Mean Field Game Theory for Gas Storage Valuation - BP Con�dential

The solution is :

H̄t = Et

[∫ T

t

exp

(
−
∫ u

t

h̄2(v)

C + p1
dv

)
(A1 + p1bQ(u,Qu))du

]

So

µt =
H̄t − h̄2(t)Et

C + p1

and dEt = µtdt = H̄t−h̄2(t)Et
C+p1

dt gives :

Et = exp

(
−
∫ t

0

h̄2(u)

C + p1
du

)
E0 +

1

C + p1

∫ t

0

exp

(
−
∫ t

u

h̄2(v)

C + p1
dv

)
H̄udu

Now that we know the average inventory and control. We search the optimal control of a generic player, which
is �nding Yt. We assume Yt = Ht + P (Qt)− h2(t)St

dYt = dHt +

p1bQ(t, Qt)− h′2(t)St − h2

Ht − h2(t)St − p1
H̄t−h̄2(t)Et

C+p1
)

C

 dt

= −(A1 −A2St)dt+ ZtdWt

(54)

Taking h2 satisfying :  h′2 −
h2

2

C
+A2 = 0

h2(T ) = B

We have :  dHt =

(
h2(t)Ht

C
−A1 − p1bQ(t, Qt)−

h2(t)p1

C
µt

)
dt+ ZtdWt

HT = 0

Therefore :

Ht = Et

[∫ T

t

exp

(
−
∫ u

t

h2(v)

C
dv

)(
A1 + p1bQ(u,Qu) +

h2(u)p1

C

H̄u − h̄2(u)Eu
C + p1

)
du

]

and dSt = αtdt = Ht−h2(t)St−p1µt
C dt gives :

St = exp

(
−
∫ t

0

h2(u)

C
du

)
S0 +

1

C

∫ t

0

exp

(
−
∫ t

u

h2(v)

C
dv

)
(Hu − p1µt) du

The expected payo� a time t is :

Vt = Et

[∫ T

t

−αuP (Qu + µu)− α2
u

2C
+A1Su −A2

S2
u

2
du+ P (QT )ST −B

S2
T

2

]

=⇒ Vt = H0
t + (Ht + P (Qt))St − h2(t)

S2
t

2

With H0
t = Et

[∫ T
t

(
Hu−p1

H̄u−h̄2(u)Eu
C+p1

)2

2C du

]

IST Quantitative Analytics 28 of 86 September 24, 2019



IS
T
_
Q
u
a
n
ti
ta
ti
v
e_

A
n
al
y
ti
cs
_
In
te
ll
ec
tu
a
l_
P
ro
p
er
ty

5 SYSTEM EQUATION AND RESOLUTION 29

5.2.3 Numerical results

We take the exogenous demand as an Ornstein-Uhlenbeck process with a seasonality trend :

dQt = −a(Qt − f0(t))dt+ σdWt

The main di�culty to have numerical results is to compute the conditional expectations. Fortunately with this
demand process, most of them are computable only using deterministic quadrature methods. Only H0

t require a
Monte-Carlo simulation to be computed.

Et[bQ(u,Qu)] = Et[−a(Qu − f0(u))]

Et[Qu] = e−a(u−t) (Qt +
∫ u
t
af(s)ea(s−t)ds

)
= fQ(u, t,Qt)

Therefore : H̄t =
∫ T
t

exp
(
−
∫ u
t

h̄2(v)
C+p1

dv
)

(A1 − ap1(fQ(u, t,Qt)− f0(u)))du = h̄(t, t, Qt)

Et = exp
(
−
∫ t

0
h̄2(u)
C+p1

du
)
E0 + 1

C+p1

∫ t
0

exp
(
−
∫ t
u
h̄2(v)
C+p1

dv
)
h̄(u, u,Qu)du = e(t, 0, E0, )

Et[H̄u] =
∫ T
u

exp
(
−
∫ v
u
h̄2(w)
C+p1

dw
)

(+A1 − ap1(fQ(v, t,Qt)− f0(v)))dv = h̄(u, t,Qt)

Et[Eu] = exp
(
−
∫ u
t

h̄2(v)
C+p1

dv
)
Et + 1

C+p1

∫ u
t

exp
(
−
∫ u
v
h̄2(w)
C+p1

dw
)
h̄(v, t,Qt)dv = e(u, t, Et, Qt)

Ht =
∫ T
t

exp
(
−
∫ u
t
h2(v)
C dv

)(
A1 − ap1(fQ(u, t,Qt)− f0(u)) + h2(u)p1

c
h̄(u,t,Qt)−h̄2(u)e(u,t,Et,Qt)

C+p1

)
du = h(t, Qt, Et)

For the numerical results, we take the seasonality of the form :

f0(t) = Kcos(2πt+ φ)

We chose the following set of parameters :

T = 1, A1 = 5, A2 = 5, B = 10, C = 1, P0 = 100, p1 = 1, E0 = 0, a = 5, K = 5, φ =
3π

4
, σ = 1

Figure 5.6: Qt
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Mean Field Game Theory for Gas Storage Valuation - BP Con�dential

Figure 5.7: Et classic vs MFG

Figure 5.8: µt classic vs MFG

Figure 5.9: Pt classic vs MFG

We notice that, contrary to the market impact models, the MFG strategy is not in advance of the classic
strategy. It seems that the players buy and sell less than what they would have if the price did not depend on µ.
The interesting feature is that the price seasonality is �attened compared to the classic case.
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5 SYSTEM EQUATION AND RESOLUTION 31

5.3 General price model

This model is a combination of the two models from Cardaliaguet and Alasseur.

5.3.1 Derivation of the equations

We recall the payo� function :

J(α, µ) = E

[∫ T

0

(−αtP (t,Xt, µt)−
C

2
α2
t +A1St −

A2

2
S2
t )dt+ P̃ (XT )ST −

B

2
S2
T

]

We use the Gateaux di�erentiate to �nd the optimal control.

dβJ(α, µ) = E

[∫ T
0

(−βtP (t,Xt, µt)− Cαtβt +A1S
β
t −A2StS

β
t )dt+ P̃ (XT )SβT −BSTS

β
T

]
with Sβt =

∫ t
0
βsds

Let Y be the solution of the following backward-stochastic di�erential equation :{
dYt = −(A1 −A2St)dt+ ZtdWt

YT = P̃ (QT )−BST
(55)

by the Ito lemma we have :

dβJ(α, µ) = E

[∫ T
0

(−P (t,Xt, µt)− Cαt + Yt)βtdt
]

If α is optimal the Gateaux di�erentiate is null for any β which give the following coupling equation :

αt = Yt−P (t,Xt,µt)
C

µt is given by the following equation :

µt =

∫
α(t, s,Xt, Et)mt(ds)

µt =
Ȳt − P (t,Xt, µt)

C

(56)

The �nal Mean Field Game system is therefore :



dXt = b(t,Xt, µt)dt+ σ(t,Xt, µt)dWt

dSt = Yt−P (t,Xt,µt)
C dt

dYt = −(A1 −A2St)dt+ ZtdWt

YT = P̃ (XT )−BST
dEt = Ȳt−P (t,Xt,µt)

C dt

dȲt = −(A1 −A2Et)dt+ ZtdWt

ȲT = P̃ (XT )−BET
µt = Ȳt−P (t,Xt,µt)

C

(57)
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Mean Field Game Theory for Gas Storage Valuation - BP Con�dential

5.3.2 Analytical solution in Bachelier permanent market impact and a�ne instantaneous market
impact

Let's imagine that there is an economical price, or fair price, process Pt following a Bachelier dynamic with
permanent market impact, and that the price paid by the players at time t is this economical price plus a spread
due to the market condition : p1µt. 

dPt = (f0(t) + νµt)dt+ σdWt

dSt = Yt−Pt−p1µt
C dt

dYt = −(A1 −A2St)dt+ ZtdWt

YT = PT −BST
dEt = Ȳt−Pt−p1µt)

C dt

dȲt = −(A1 −A2Et)dt+ ZtdWt

ȲT = PT −BET
µt = Ȳt−Pt−p1µt

C

(58)

Assuming Ȳt = Pt + H̄t − h̄2(t)Et , we have :

µt =
H̄t − h̄2(t)Et

C + p1

The function h2 satis�es :  h̄2
′ − h̄2

2

C + p1
+A2 = 0

h̄2(T ) = B

Therefore :

h̄2(t) = ρ̄(C + p1)
1 + c̄2 exp(2ρ̄t)

1− c̄2 exp(2ρ̄t)
(59)

With ρ̄ =
√

A2

C+p1
and c̄2 = B−ρ̄(C+p1)

B+ρ̄(C+p1)

It remains :


dEt =

H̄ − h̄2(t)Et
C + p1

dt

dH̄t =
(
h̄2(t)H̄t
C+p1

−A1 − f0(t)− ν H̄−h̄2(t)Et
C+p1

)
dt+ ZtdWt

H̄T = 0

Taking Et = E(t) with E solution of this equation :{
(C + p1)E′′ + νE′ −A2E = −A1 − f0

E(0) = E0, (C + p1)E′(T ) +BE(T ) = 0
(60)

and H̄t = h̄1(t) = (C + p1)E(t)′ + E(t)h̄2(t), we have the solution for the FBSDE on E and H̄. We also have

Pt = P0 +
∫ t

0
f0(u)du+ ν(E(t)− E0) + σWt Now it remains to solve the system


dSt =

Yt − Pt − p1µt
C

dt

dYt = −(A1 −A2St)dt+ ZtdWt

YT = PT −BST

(61)
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5 SYSTEM EQUATION AND RESOLUTION 33

Assuming Yt = Pt +Ht − h2(t)St we have :

The function h2 satis�es  h2
′ − h2

2

C
+A2 = 0

h2(T ) = B

Therefore :

h2(t) = ρC
1 + c2 exp(2ρt)

1− c2 exp(2ρt)
(62)

With ρ =
√

A2

C and c2 = B−ρC
B+ρC

It remains : 
dSt =

Ht − h2(t)St − p1µt
C

dt

dHt =
(
h2(t)Ht

C −A1 − f0(t)−
(
ν + h2(t)p1

C

)
E′(t)

)
dt+ ZtdWt

HT = 0

Then

Ht = h1(t) =

∫ T

t

exp

(
−
∫ u

t

h2(v)

C
dv

)(
A1 + f0(u) +

(
ν +

h2(u)p1

C

)
E′(u)

)
du

St = exp

(
−
∫ t

0

h2(v)

C
dv

)
S0 +

∫ t

0

exp

(
−
∫ t

u

h2(v)

C
dv

)
h1(u)− p1E

′(u)

C
du

The expected payo� at time t is :

Vt = Et

[∫ T

t

[
−αu(Pu + p1µu)− α2

u

2C
+A1Su −A2

S2
u

2

]
du+ PTST −B

S2
T

2

]

=⇒ Vt = v(t, St, Pt) = h0(t) + (h1(t) + Pt)St − h2(t)
S2
t

2

With h0(t) =
∫ T
t

(h1(u)−p1E
′(u))2

2C du

5.3.3 Numerical results

For the numerical results, we take the seasonality of the form :

f0(t) = Kcos(2πt+ φ)

We chose the following set of parameters, (the parameter σ is not relevant, we set it to zeros to see the expectation
of the price ) :

T = 1, A1 = 5, A2 = 5, B = 10, C = 1, P0 = 100, p1 = 1, E0 = 0, a = 5, ν = 6, K = 5, φ =
3π

4
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Mean Field Game Theory for Gas Storage Valuation - BP Con�dential

Figure 5.10: E(t) classic vs MFG

Figure 5.11: µ(t) classic vs MFG

Figure 5.12: Pt classic vs MFG

We can see a combination of features from the two previous subsections. The players buy and sell less and they
do it earlier than in the classic case.
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6 NUMERICAL METHODS TO SOLVE THE SYSTEM FOR MARKET IMPACT PRICE MODELS 35

6 Numerical methods to solve the system for market impact price mod-

els

Let's recall the system of equations in the general case :


dHt =

[
Hth2(t)

C
−A1 − bP

(
t, Pt,

Ht − Eth2(t)

C

)]
dt+ ZtdWt

dPt = bP

(
t, Pt,

Ht−Eth2(t)
C

)
dt+ σP (t, Pt)dWt

dEt = Ht−Eth2(t)
C dt

HT = 0

(63)

which linked to following backward PDE :

 ∂th+
1

2
σ2
P∂pph+ (1 + ∂ph)bP

(
t, p,

h(t, p, e)− eh2(t)

C

)
− hh2

C
+A1 + ∂eh

h− eh2

C
= 0

h(T ) = 0
(64)

We have already seen that when the drift do not depend of the price itself, like in the Bachelier case, the solution
for Ht and Et is deterministic and Pt is the solution of a simple forward SDE. We therefore focus on cases where
the drift of the price depend on the price.

From the literature on FBSDEs, Douglas et al. [23] and [40] et al. focus on the four step scheme developed by Ma
et al. [39] which consist primarily in solving the PDE. Delarue and Menozzi [22] on the other hand, focus on solving
directly the FBSDE, their method involve quantization. Ludwig et al. [38] applies this approach to stochastic
control, being one of the �rst method involving solving the FBSDE rather than the Hamilton-Jacobi-Bellman PDE
for these kinds of problems. On our side, we will focus on solving the PDE's version of the problem as the numerical
methods are more simple to implement and that quantization methods are a theme that have already been treated
in a previous internship in BP.

6.1 Finite di�erences method

The numerical method we used to solve the PDEs is the �nite di�erences. Our main reference for this numerical
scheme i the lecture notes of the lectures of Touzi at the Fields Institute [43]. Finite di�erences methods consist in
discretizing the variable space and solve di�erences equations. We also need to solve the PDE on a bounded variable
space in order to have a �nite number of equations (therefore solvable by a computer), thus we need additional
boundary conditions.

We denote by δt = T
n the time step and δp and δe the price and inventory steps. The variable grid is

(tk, pi, ej)k∈[[0;n]],i∈[[−np−1;np+1]],j∈[[−ne−1;ne+1]] = (kh, p0 + iδp, e0 + jδe)k∈[[0;n]],i∈[[−np−1;np+1]],j∈[[−ne−1;ne+1]]

The discretized function (h(tk, pi, ej))k,i,j is denoted by the table Hk,i,j . We use the following �nite di�erences
for the derivatives:

∂th← ∆tHk,i,j =
Hk+1,i,j −Hk,i,j

δt

∂ph← ∆pHk,i,j =
Hk,i+1,j −Hk,i−1,j

2δp

∂pph← ∆ppHk,i,j =
Hk,i+1,j − 2Hk,i,j +Hk,i−1,j

δ2
p

∂eh← ∆eHk,i,j =
Hk,i,j+1 −Hk,i,j−1

2δe
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Mean Field Game Theory for Gas Storage Valuation - BP Con�dential

We get the following di�erences system ∀k ∈ [[0;n− 1]], i ∈ [[−np;np]], j ∈ [[−ne;ne]] : ∆tHk,i,j +
1

2
σ2(tk, pi)∆ppHk,i,j + (1 + ∆pHk,i,j)bP

(
tk, pi,

Hk,i,j − ejh2(tk)

C

)
−Hk,i,jh2(tk)

C +A1 + ∆eHk,i,j
Hk,i,j−ejh2(tk)

C = 0

(65)

Solving this system is �nding the zeros of a function F : Rn(2np+1)(2ne+1) → R
n(2np+1)(2ne+1). We use Newton-

Raphson method to �nd this zero.

The initial PDE is set on an open domain R∗+ × R so without boundary conditions, when solve the equation on
a closed bounded domain, we need to set conditions on the boundaries. We can only chose them arbitrarily since
we have no clue of what are the actual solution's values at those points. Like in Thompson et al. [42] suggest, we
assume that ∂ppH −−−→

p→0
0 and ∂ppH −−−→

p→∞
0. For the conditions on the lower and upper boundaries, we set h = 0.

However we have two conditions while the equation is of �rst order in e so this result in having spurious oscillations
on the function in the e direction.

The complete system is :

∀k ∈ [[0;n− 1]], i ∈ [[−np;np]], j ∈ [[−ne;ne]] : ∆tHk,i,j +
1

2
σ2(tk, pi)∆ppHk,i,j + (1 + ∆pHk,i,j)bP

(
tk, pi,

Hk,i,j − ejh2(tk)

C

)
−Hk,i,jh2(tk)

C +A1 + ∆eHk,i,j
Hk,i,j−ejh2(tk)

C = 0

∀i, j, Hn,i,j = 0

∀k ∈ [[0;n− 1]]∀j, ∆ppHk,np,j = 0

∀k ∈ [[0;n− 1]]∀j, ∆ppHk,−np,j = 0

∀k ∈ [[0;n− 1]]∀i ∈ [[−np;np]], Hk,i,±(ne+1) = 0

(66)

Remark 11

This is the implicit Finite di�erences method : the values of Hk,i,j cannot be computed directly, we need to
solve an equation. Another method is the explicit di�erences method : the approximate of the time derivative
is ∆tHk,i,j =

Hk,i,j−Hk−1,i,j

δt
. In this case at each time tk we can compute the values Hk,i,j explicitly from the

values at time tk+1. The explicit method is therefore less complex than the implicit method, the downside is
that it is not stable.
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6 NUMERICAL METHODS TO SOLVE THE SYSTEM FOR MARKET IMPACT PRICE MODELS 37

Figure 6.1: H(t, p, e) at t = T
2
, big spurious oscillations

On this �gure we can see the spurious oscillations on the result. We use a brute-forcing algorithm to solve this
issue : we repeat the algorithm replacing at each step the boundaries conditions on e like this. Hm+1[k, i,−ne] =

Hm[k, i,−ne] +Hm[k, i,−ne + 1]

2
Hm+1[k, i, ne] = Hm[k,i,ne]+H

m[k,i,ne−1]
2

The algorithm stop when the di�erence between two iterations is arbitrarily small.

Figure 6.2: H(t, p, e) at t = T
2
, very small spurious oscillations
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Mean Field Game Theory for Gas Storage Valuation - BP Con�dential

This �gure shows how the oscillations of the previous �gure are greatly reduced after some iterations. We are
however not entirely satis�ed because it require solving a non linear PDE multiple times which largely increases
the complexity and calculus time of the algorithm. Another solution would be to use �rst order implicit or explicit
approximate in e with a bounding condition on only one value of e, but for some reason this method explode.

6.1.1 Example : Black-Scholes model

The PDE to solve is : ∂th+
1

2
σ2p2∂pph+ (1 + ∂ph)p

(
f0 + ν

h− eh2

C

)
− hh2

C
+A1 + ∂eh

h− eh2

C
= 0

h(T ) = 0
(67)

The di�erence system is :



∀k ∈ [[0;n− 1]], i ∈ [[−np;np]], j ∈ [[−ne;ne]] : ∆tHk,i,j +
1

2
σ2p2

i∆ppHk,i,j + (1 + ∆pHk,i,j)pi

(
f0(tk) + ν

Hk,i,j − ejh2(tk)

C

)
−Hk,i,jh2(tk)

C +A1 + ∆eHk,i,j
Hk,i,j−ejh2(tk)

C = 0

∀i, j, Hn,i,j = 0

∀k ∈ [[0;n− 1]], ∀j,Hk,±(np+1),j = BCk,±(np+1),j

∀k ∈ [[0;n− 1]], ∀i,Hk,i,±(ne+1) = BCk,i,±(ne+1)

(68)

For the numerical example, we used for the problem parameters :

T = 1, A1 = 5, A2 = 16, B = 2, C = 1, P0 = 100, E0 = 0, K = 0.3, φ =
3π

4
, ν = 0.01, σ = 0.1

and for the numerical method parameters :

n = 300, δt = T/(n− 1), np = 10, ne = 30, δp = 3, δe = 0.2,

Figure 6.3: Et with and without market impact
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6 NUMERICAL METHODS TO SOLVE THE SYSTEM FOR MARKET IMPACT PRICE MODELS 39

Figure 6.4: µt with and without market impact

Figure 6.5: Pt with and without market impact

From the returned function H(t, p, e), we simulated one trajectory for the tuple (Pt, Et, µt) for the Mean Field
Game and for the classical case using the same path of Brownian motion. The solution for the classical case comes
from solving the forward-backward SDE directly : when ν = 0 one can verify that the following expression is
solution of the backward equation.

Ht = Et,Pt

[∫ T

t

exp

(
−
∫ s

t

h2(u)

C
du

)
(A1 + Psf0(s))

]

The conditional expectation has closed formula because an expected Black-Scholes price in the futur knowing
the price today has one. Having this exact solution closed formula of problem tied to the MFG problem allows us
to be con�dent in the result return by the algorithm.

On these �gures we can seen how in the Mean Field Game equilibrium strategy, the average player seems to
buy and sell earlier, like we've seen with the Bachelier price model.
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Figure 6.6: H(t, p, e) at t = T
2

Figure 6.7: H(t, p, e) at p = p0
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6 NUMERICAL METHODS TO SOLVE THE SYSTEM FOR MARKET IMPACT PRICE MODELS 41

Figure 6.8: H(t, p, e) at e = 0

On these three �gure we've plotted the function H with respect to its arguments. Since the space of argument
is three dimensional, we can only have 2-D projections of it to represent the function in a 3-D space. The 4-th
dimension being the third argument not used, we can however use a cursor to simulate this fourth dimension. We
can notice that the function H is decreasing in e. This can be expected because when Et is large, µt is more likely
to be low, meaning that the price is more likely to go down, therefore it is better to sell now, and vice-versa. For
the monotony in price however, one would expect it to be decreasing in price because the lower the price is the
more you buy. Actually the expected variation of price are proportional to the price there for when the price is
expected to up at a certain moment, the more the price is already high the more you will make pro�t by buying
it now and selling it later. This is how at some point in time, the function H is increasing in price : the more the
price is high the more you want to buy.

6.1.2 Example : Clowlow-Strickland 1 factor model

The PDE to solve is : ∂th+
1

2
σ2p2∂pph+ (1 + ∂ph)p

(
F ′0
F0

+ a (ln(F0)− ln(p))) + ν
h− eh2

C

)
− hh2

C
+A1 + ∂eh

h− eh2

C
= 0

h(T ) = 0

(69)

The di�erence system is :



∀k ∈ [[0;n− 1]], i ∈ [[−np;np]], j ∈ [[−ne;ne]] : ∆tHk,i,j +
1

2
σ2p2

i∆ppHk,i,j + (1 + ∆pHk,i,j)pi

(
F ′0(tk)

F0(tk)
+ a (ln(F0(tk))− ln(pi))) + ν

Hk,i,j − ejh2(tk)

C

)
−Hk,i,jh2(tk)

C +A1 + ∆eHk,i,j
Hk,i,j−ejh2(tk)

C = 0

∀i, j, Hn,i,j = 0

∀k ∈ [[0;n− 1]], ∀j,Hk,±(np+1),j = BCk,±(np+1),j

∀k ∈ [[0;n− 1]], ∀i,Hk,i,±(ne+1) = BCk,i,±(ne+1)

(70)

For the numerical example, we used for the problem parameters :

T = 1, A1 = 5, A2 = 25, B = 5, C = 1, P0 = 100, E0 = 0, K = 0.3, φ =
π

4
, ν = 0.015, σ = 0.15, a = 5
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Mean Field Game Theory for Gas Storage Valuation - BP Con�dential

and for the numerical method parameters :

n = 300, δt = T/(n− 1), np = 10, ne = 15, δp = 3, δe = 0.2

Figure 6.9: Et with and without market impact

Figure 6.10: µt with and without market impact

Figure 6.11: Pt with and without market impact
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Figure 6.12: H(t, p, e) at t = T
2

Figure 6.13: H(t, p, e) at p = p0
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Mean Field Game Theory for Gas Storage Valuation - BP Con�dential

Figure 6.14: H(t, p, e) at e = 0

On these �gures, we can make the same comments as in the Black-Scholes model.

6.2 Market impact price model without noise

Assuming that σ = 0 in the price model implies that the FBSDE system becomes a FBODE system.


h′1(t) =

h1(t)h2(t)

C
−A1 − bP

(
t, P (t),

h1(t)− E(t)h2(t)

C

)
P ′(t) = bP

(
t, P (t), h1(t)−E(t)h2(t)

C

)
E′(t) = h1(t)−E(t)h2(t)

C

h1(T ) = 0, E(0) = E0, P (0) = P0

(71)

Those systems can be easily solved by �nite di�erences method.

6.2.1 Example : Black-Scholes

The system becomes, after di�erentiating the last equation :
h1(t) = CE′(t) + h2(t)E(t)
P ′(t)
P (t) = f0(t) + νE′(t)

CE′′(t) + P (t)(f0(t) + νE′(t))−A2E +A1 = 0

CE′(T ) +BE(T ) = 0, E(0) = E0, P (0) = P0

(72)

That gives :
P (t) = P0 exp (F (t) + ν(E(t)− E0))

denoting F (t) =
∫ t

0
f0(s)ds and therefore it remains the following second order non-linear ODE :{
CE′′(t) + P0 exp (F (t) + ν(E(t)− E0)) (f0(t) + νE′(t))−A2E +A1 = 0

CE′(T ) +BE(t) = 0, E(0) = E0

(73)

T = 1, A1 = 5, A2 = 16, B = 2, C = 1, P0 = 100, E0 = 0, K = 0.3, φ =
3π

4
, ν = 0.01
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Figure 6.15: E(t) with and without market impact

Figure 6.16: µt with and without market impact

Figure 6.17: P (t) with and without market impact

For the trajectories of Et and its derivative µt, we �nd similar ones than in the case with noise, comforting us
in the belief that our numerical methods gives good approximations of the real solutions.
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6.2.2 Example : Clewlow-Strickland

The price in the Clewlow-Strickland price model is

P (t) = F0(t) exp

(
νe−at

∫ t

0

easE′(s)ds

)
and bP (t, p, µ) = p

(
F ′0(t)
F0(t) − a ln( p

F0(t) ) + νµ
)
. The system is then :


h1(t) = CE′(t) + h2(t)E(t)

CE′′(t) + F0(t) exp
(
νe−at

∫ t
0
easE′(s)ds

)(
F ′0(t)
F0(t) − aνe

−at ∫ t
0
easE′(s)ds+ νE′(t)

)
−A2E +A1 = 0

CE′(T ) +BE(t) = 0, E(0) = E0

(74)

T = 1, A1 = 5, A2 = 25, B = 5, C = 1, P0 = 100, E0 = 0, K = 0.3, φ =
π

4
, ν = 0.015, a = 5

Figure 6.18: E(t) with and without market impact

Figure 6.19: µ(t) with and without market impact
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6 NUMERICAL METHODS TO SOLVE THE SYSTEM FOR MARKET IMPACT PRICE MODELS 47

Figure 6.20: P (t) with and without market impact

The same remark can be done than for the Black-Scholes model.

6.3 Learning

The solution of the MFG system describing an equilibrium , one may wonder how this con�guration can be
reached without the coordination of the agents. We present here a simple model to explain this phenomenon, it
is inspired from �ctitious play in game theory. For this we assume the game repeats the same [0, T ] intervals an
in�nite number of rounds. Round after round, market agents try to "learn" (i.e. to build an estimate of) the mean
of the controls µt = µ(t, Pt, Et). It is close to what storage managers do : they try to estimate what the other
storage would do in a given situation to adjust their own behaviour. The repeated games eventually converges to
the Mean Field Game equilibrium, without any player knowing the others' individual payo� functions.

Cardaliaguet [12] and Hadikhanloo [30] show results of convergence of the procedure toward an equilibrium for
potential Mean Field Games. Potential Mean Field Games are MFG where f(t, ·) and g derived from potentials.
A function f is said to derive from a potential if ∃F : M1(Rd) → R s.t. δmF = f . One can show using Schwarz
theorem that f derive from a potential if and only if

∀x, y,m δmf(x,m, y) = δmf(y,m, x)

Guo et al. [29] worked on reinforcement learning for ad auction games.

6.3.1 Bachelier case

Cardaliaguet and Lehalle [13] applied the concept of learning to their optimal liquidation game.

The Bachelier case is simpler for learning because the controls and µ do not depend on the price, therefore they
are deterministic in time. The players only need to know what will be µ(t) at each time t.

Each player a has its own prior µa,0, learning rate πa,n and measure of the average control of the nth game
µa,n,measuredt = µnt + εa,nt . At each game the use a estimator of µ : µa,n,estimatet from which they compute their
optimal control using standard stochastic optimization. Then for the next game they update their estimator of µ :

µa,n+1,estimate
t = (1− πa,n)µa,n,estimatet + πa,nµa,n,measuredt , πa,n ∈ [0, 1]

The idea behind the convergence lies in the Banach �xed point theorem since the equilibrium state is such that
the resulting average control µ(·) induce control to the players that averages to µ(·), thus µ(·) is the �xed point of
a certain functional.

A good choice for πa,n is

πa,n =
1

(1 + n)γ
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with γ ∈ (0, 1)

For the numerical example, we take the seasonality of the form :

f0(t) = Kcos(2πt+ φ)

We chose the following set of parameters, (with the Bachelier model, the results do not depend on the volatility so
one can take whichever value they want for σ) :

T = 1, A1 = 5, A2 = 5, B = 10, C = 1, P0 = 100, E0 = 0, K = 5, φ =
3π

4
, ν = 7

Figure 6.21: γ = 0, 74 rounds Figure 6.22: γ = 0.1, 38 rounds

Figure 6.23: γ = 0.3, 37 rounds Figure 6.24: γ = 0.6, 85 rounds

Figure 6.25: γ = 0.9, 566 rounds Figure 6.26: γ = 1, 1334 rounds

We simulated six sets of repeated games until the di�erence between two games is arbitrarily small. For each
set, every player has the same learning algorithm with the same prior µ0(t) = 0, and we assumed εn(t) = 0. The
di�erence between the six sets is the power γ. Under each �gure there is the number of rounds of games required to
satisfy the same criteria of convergence : d(µn+1, µn) < ε with d a distance. We can see how γ in�uences how the
system converges. Low enough values result in oscillations around the limit when converging, while high enough
values lead to an amortized convergence. The parameter ν also plays a similar role, high enough values of ν with
low enough values of γ can even lead to unstable systems. Also values of α greater than 1 can lead to a convergence
but not toward the solution of the Mean Field Game equations.

6.3.2 Other cases

The average control µ now depends on t, Et , Pt or Qt. The learning becomes trickier because the players only
'observe' one path of Brownian motion at a time, a countable number of times, to learn the values of a function on
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6 NUMERICAL METHODS TO SOLVE THE SYSTEM FOR MARKET IMPACT PRICE MODELS 49

continuous arguments space. In the Bachelier case, there were only one value to know at for each time t. Learning
in Mean Field Game with common noise is described as an open problem in the literature. (The Bachelier case is
a common noise problem but the optimization problem result in the controls not depending on the noise.) An idea
can be to have a parametric estimator of µ(t, p, e). For example, using a family of polynomials in p, e and t and
�nd the linear combination that best matches the observations.

Abandoning the real life analogy, we can assume that at each round the players can observe the function
µn : t, p, e→ µn(t, p, e) computed as the mean of the strategies of each player of the round n :

µn(t, p, e) =

∫
a

ha,n(t, p, e)− h2(t)e

C
m̄0(da)

Then like in the Bachelier case, each player construct an estimate of µn+1(t, p, e) and compute his optimal control
(mainly ha,n+1(t, p, e)) for the next round.

Numerically, computing the hn can be done by �nite di�erences for example. In comparison with the previ-
ous method, the PDE is linear so �nding the zeros in the associated di�erence equation is �nding the zero of a
linear system, which is much simplier than using Newton-Raphson method in a non-linear equation. Loosing the
computational complexity of the Newton-Raphson method, we however get the complexity from convergence in the
Banach theorem.

Numerical tests show that this method of learning works and converges to the equilibrium, which is the same as
the one found with �nite di�erences. However, the method has shown to not being always reliable as some model
parameters' value can make this method explode while the �nite di�erences stay stable. Also when it converges,
the learning method require more iteration of computing a Jacobian and inverting a linear system than the �nite
di�erences does, for the same criteria of convergence.
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7 The hard constraints problem

7.1 Derivation of the equations

The linear-quadratic case is �ne for pedagogic purposes or to show heuristic results on the behaviours of the
players. However for business purposes, we need to have more realistic assumptions, especially we cannot have the
inventory to be negative or exceed the maximum capacity.

A =

{
(αt)0≤t≤T : −Wmax(St) ≤ αt ≤ Imax(St), ∀t 0 ≤ S0 +

∫ t

0

αsds ≤ Smax, Smin
f ≤ S0 +

∫ T

0

αtdt ≤ Smax
f

}

For the example we choose Smax
f = Smax, Smin

f = 0 , for the ratchets : Wmax(s) = W
√

s
Smax , Imax(s) =

I
√

1− s
Smax , and the payo� function of the form :

f(αt, St, Pt)dt = (−αtPt − cI(αt)+ − cW (αt)−) dt

J(t, s, p, α) = Et,s,p

[∫ T

t

f(αu, Su, Pu)du

]

With this choices of ratchets, the set of admissible control can be rewritten :

A =
{

(αt)0≤t≤T : −Wmax(St) ≤ αt ≤ Imax(St)
}

The dynamic programming principle gives :{
∂tv + ∂pvbP (t, p, µ(t, p,m)) +

1

2
σ2∂ppv + ∂mv[−∂s(mtα)] +H(t, s, p, ∂sv) = 0

v(T ) = 0
(75)

With
H(t, s, p, y) = sup

α∈[−Wmax(s),Imax(s)]

{−αp− cI(α)+ − cW (α)− + αy}

From the Hamiltonian we deduce the form of the control :

α(t, s, p,m) =


Imax(s) if ∂sv(t, s, p,m)− p > cI

0 if ∂sv(t, s, p,m)− p ∈ [−cW , cI ]
−Wmax(s) if ∂sv(t, s, p,m)− p < −cW

Like in the classic framework, we �nd that the control is bang-bang (see [6]). The average control µt is :

µt = µ(t, Pt,mt) =

∫
α(t, s, Pt,mt)mt(ds)

The dynamic of mt is :
dmt = −∂s(mtα(t, s, Pt,mt))dt

To sum up, the problem is to �nd v(t, s, p,m) such that :
∂tv + ∂pvbP (t, p, µ) +

1

2
σ2∂ppv + ∂mv[−∂s(mα)] + (∂sv − p)α− cI(α)+ − cW (α)− = 0

v(T ) = 0

α(t, s, p,m) = Imax(s)1(∂sv(t, s, p,m)− p > cI)−Wmax(s)1(p− ∂sv(t, s, p,m) > cW )

µ(t, p,m) =
∫
α(t, s, p,m)m(ds)

(76)
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7 THE HARD CONSTRAINTS PROBLEM 51

In the general case the problem seems rather impossible, even to think of a numerical method. However if we
assume that the initial distribution is a �nite sum of Diracs then we already have seen that the distribution remains
a sum of Dirac through time. In this case we can represent the distribution variable by the Diracs positions, since
the proportion for each Diracs remains the same. Denoting by (Eit)1≤i≤n the positions of the Diracs at time t, the
system becomes.



∂tv + ∂pvbP (t, p, µ) +
1

2
σ2∂ppv +

∑
j

∂ejvα(t, ej , p, (ei)1≤i≤n) + (∂sv − p)α− cI(α)+ − cW (α)− = 0

v(T ) = 0

α(t, s, p, (ei)1≤i≤n) = Imax(s)1(∂sv(t, s, p, (ei)1≤i≤n)− p > CI)−Wmax(s)1(p− ∂sv(t, s, p, (ei)1≤i≤n) > CW )

µ(t, p, (ei)1≤i≤n) =
∑
j α(t, ej , p, (ei)1≤i≤n)m0(Ej0)

(77)

Assuming that initially all players have the same inventory we have :
∂tv + ∂pvbP (t, p, α) +

1

2
σ2∂ppv + (∂ev − p)α− cI(α)+ − cW (α)− = 0

v(T ) = 0

α(t, e, p) = Imax(e)1(∂sv(t, e, p)− p > CI)−Wmax(e)1(p− ∂sv(t, e, p) > CW )

(78)

7.2 Numerical method

We'll focus on this last equation (78) where all players have the same initial inventory. This equation with
ν = 0 is the HJB equation for the classic problem. We will use this similarity and adapt the �nite di�erences
method from the work of Følstad [25]. He worked on various numerical method to solve the HJB equation for
gas storage valuation in the classic case such as �nite di�erences with an upwind technique, �nite elements and a
semi-Lagrangian time stepping method. We will use the upwind technique that require conditions when e = 0 or
e = Smax that are : α(e = 0) ≥ 0 and α(e = Smax) ≤ 0. Those conditions are already satis�ed because of the
ratchets.

Denoting ∆+
x fk = f(xk+1)−f(xk)

dx
and ∆−x fk = f(xk)−f(xk−1)

dx
, the upwind technique is approximate the equation

f ′′(x) + a(x)f ′(x) + b(x)f(x) = 0

by

∆xxfk + (a(xk))+∆+
x fk − (a(xk))−∆−x fk + b(xk)fk = 0

This technique is supposed to prevent the apparition of spurious oscillations. Unfortunately, we could not use
it for linear-quadratic Black-Scholes or Clewlow-Strickland model, as we could not impose α ≥ 0 and αleq0 on the
lower and upper bounds respectively.

7.2.1 Ornstein-Uhlenbeck price model

The price is an Ornstein-Uhlenbeck process.

dPt = (−a(Pt − F0(t)) + νµt) dt+ σdWt

with F0(t) = P0 +Kcos(2πt+ φ) We take the following values for the parameters :

T = 1, a = 30, ν = 3, P0 = 100, K = 20, φ =
π

4
, σ = 10

and for the storage :
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Smax = 1, cI = 0.3, cW = 0.1, Imax = 5, Wmax = 10

We get the followings results for y(t, p, e) = ∂ev(t, p, e).

Figure 7.1: y(t, p, e) at t = T
2

Figure 7.2: y(t, p, e) at p = P0
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7 THE HARD CONSTRAINTS PROBLEM 53

Figure 7.3: y(t, p, e) at e = Smax

2

And for α(t, p, e) = Imax(e)1(y(t, e, p)− p > CI)−Wmax(e)1(p− y(t, e, p) > CW )

Figure 7.4: α(t, p, e) at t = T
2
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Mean Field Game Theory for Gas Storage Valuation - BP Con�dential

Figure 7.5: α(t, p, e) at p = P0

Figure 7.6: α(t, p, e) at e = Smax

2

We can see that the numerical method does not return as smooth functions as it did for the linear-quadratic
case. For the α function, we expected it to have jumps in its plot but we also expected it to be smooth outsides of
jumps which is not entirely true. On y and α, we can see that the most problems occurs in the e directions, similar
to the fact that we only had spurious oscillations on the e axis in the linear-quadratic case.
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7 THE HARD CONSTRAINTS PROBLEM 55

We plot one path of price and corresponding strategy and compare it to the classic case (ν = 0). We use E0 = 0,
P0 = 100.

Figure 7.7: Et

Figure 7.8: Pt

7.2.2 Clewlow-Strickland price model

We recall the stochastic di�erential equation in this case :

dPt
Pt

=

(
F ′0(t)

F0(t)
+ a (ln(F0(t))− ln(Pt)) +

σ2

4
(1− exp(−2at)) + νµ̄t

)
dt+ σdWt

with F0(t) = P0 +Kcos(2πt+ φ) We take the following values for the parameters :

T = 1, a = 0.3, ν = 0.03, P0 = 100, K = 20, φ =
π

4
, σ = 0.3

and for the storage :

Smax = 1, cI = 0.3, cW = 0.1, Imax = 5, Wmax = 10

We get the followings results for y(t, p, e) = ∂ev(t, p, e).
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Mean Field Game Theory for Gas Storage Valuation - BP Con�dential

Figure 7.9: y(t, p, e) at t = T
2

Figure 7.10: y(t, p, e) at p = P0
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7 THE HARD CONSTRAINTS PROBLEM 57

Figure 7.11: y(t, p, e) at e = Smax

2

And for α(t, p, e) = Imax(e)1(y(t, e, p)− p > CI)−Wmax(e)1(p− y(t, e, p) > CW )

Figure 7.12: α(t, p, e) at t = T
2
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Figure 7.13: α(t, p, e) at p = P0

Figure 7.14: α(t, p, e) at e = Smax

2

We plot one path of price and corresponding strategy and compare it to the classic case (ν = 0). We use E0 = 0,
P0 = 100.
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Figure 7.15: Et

Figure 7.16: Pt



IS
T
_
Q
u
a
n
ti
ta
ti
v
e_

A
n
al
y
ti
cs
_
In
te
ll
ec
tu
a
l_
P
ro
p
er
ty

Mean Field Game Theory for Gas Storage Valuation - BP Con�dential

8 Calibration

8.1 Method

To use this theory in practice for gas storage valuation, we need to have ourself a price model. We try to
calibrate two di�erent models : a Bachelier price model with market impact and a model where the price is only a
function of the demand. Denoting by Dn,n+1 the demand between tn and tn+1, Pn+m,n+m+1 and ∆Pn+m,n+m+1

the mean of the prices and variation of price respectively between tn+m and tn+m+1, we try to �nd the best ν, p1

and m that �t our data for a given model using Ordinary Least Squares regression.

∆Pn+m,n+m+1 = νDn,n+1 + εn

Pn+m,n+m+1, = p1Dn,n+1 + p0 + εn

Our data is composed of the daily forward curves for the weekdays of the �ve last years , as well as the volumes
traded for those dates for the western Europe market. The volumes traded are divided between imports, exports -
pipelines and LNG -, storages withdrawal, injection, production, and consumption.

The criteria for �tness of the model is how small is the MSE (mean of the square errors).

8.2 Results

We take tn+1−tn = 1 week. We aggregated the consumption, export, and storage injection into a single variable
called consumption, and production, import and storage withdrawal into a variable called production. We de�ne
the net consumption as the consumption minus the production. We plot the data we have.

Figure 8.1: Consumption and production

Figure 8.2: Net consumption
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8 CALIBRATION 61

Figure 8.3: Price

Figure 8.4: Price variation

We can �rst see that the curves do not match very well except for that one spike. On the following �gures, we
make the linear regression for m = 0, using the consumption and the net consumption as predictors.

Figure 8.5: Scatter plot of the price variation and the consumption
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Mean Field Game Theory for Gas Storage Valuation - BP Con�dential

Figure 8.6: Scatter plot of the price variation and the net consumption

Figure 8.7: Scatter plot of the price and the consumption

Figure 8.8: Scatter plot of the price and the net consumption

We can see visually and with the R2 how there seems to be almost no link between the price and the consumption.
We now plot the results of the regressions for di�erent values of m.
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8 CALIBRATION 63

Figure 8.9: ν(m)

Figure 8.10: R2
ν(m)

Figure 8.11: p1(m)
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Mean Field Game Theory for Gas Storage Valuation - BP Con�dential

Figure 8.12: R2
p1
(m)

We �nd the yearly seasonality of the consumption in these results, the price seems as much correlated to the
demand of the same day that to the demand of one year in the past. This is problematic to �nd the best time
di�erence between the cause and an e�ect, provided there is actually one. Indeed there is also the issue of knowing
whether the high consumption is the result of the low prices or high prices are the results of the high consumption.

Unfortunately, it seems that these models of market impact are not accurate, at least for the data we have.
Usually these kinds of models are suited for smaller time scale like hours or days. Also the model of P = p0 + p1Qt
from Alasseur [2] is understandable for the power market as the production has to be consumed right away and
cannot really be stored or shipped away. The demand process therefore does not depend on the price, and the price
adjust so that the supply matches the demand, thus having the price being an increasing function of the demand.
The gas market is a lot more complicated because of all the imports and exports, the storages, the Liquid Natural
Gas shipping, the political decisions, that are not present on the power market
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9 PRICE OF ANARCHY 65

9 Price of anarchy

The concept of the price of anarchy was introduced to quantify the ine�ciency of sel�sh behaviour in �nite
number of players games. Carmona et al. [19] extended this notion to Mean Field Games. They show some
interesting results for Linear Quadratic Extended Mean Field Games where explicit computations are possible.
The concept is comparing the average expected payo� of a player in the mean �eld equilibrium with the average
expected payo� of an agent when managed by a central planner in a Mean Field Type control.

9.1 Mean Field type Control for the Linear-Quadratic Bachelier case

Let's imagine that a supervisor want to maximize the common interest, he can choose the control of every agent.
We fall into the Mean Field type Control framework. The average control µt directly depends on the control of a
generic agents αt, therefore we denote by ᾱt instead. We want to maximize J(α, ᾱt). We denote the price by P ᾱ to
insist on the dependency of the price on the control, which was not the case in MFG. We also denote P β,ᾱ = dβP

ᾱ.

Assuming a Bachelier price model it gives P β,ᾱ = P β = νEβ̄ , with Eβ̄t = E

[∫ t
0
βsds|Ws, s ≤ t

]
=
∫ t

0
β̄Sds

J(α, ᾱ) = E

[∫ T

0

−αtP ᾱt −
C

2
α2
t +A1St −

A2

2
S2
t dt+ P ᾱT ST −

B

2
S2
T

]

We di�erentiate J with respect to α :

dβJ(α, ᾱ) = E

[∫ T

0

−βsP ᾱt − αtνE
β̄
t − Cαtβs +A1S

β
t −A2StS

β
t dt+ P ᾱT S

β
T + νEβ̄TST −BSTS

β
T

]

Using the tower property we get :

dβJ(α, ᾱ) = E

[∫ T

0

−β̄sP ᾱt − ᾱtνE
β̄
t − Cᾱtβ̄t +A1E

β̄
t −A2EtE

β̄
t dt+ P ᾱT E

β̄
T + νEβ̄TET −BETE

β̄
T

]

Taking Yt solution of the following BSDE :{
dYt = −(A1 −A2St − ναt)dt+ Zt

YT = P ᾱT − (B − ν)ST
(79)

And using Ito's lemma, we get :

dβJ(α, ᾱ) = E

[∫ T

0

−β̄sP ᾱt − Cᾱtβ̄t + Ȳtβ̄tdt

]

The control α being the argument supremum, ∀β, dβJ(α, ᾱ) = 0. Therefore :

αt =
Yt − Pt
C

It remains to �nd Yt. We search it on the form Yt = Pt + h1(t)− h2(t)St
dȲt =

(
f0(t) + ν

h1(t)− h2(t)Et
C

+ h′1(t)− h′2Et − h2(t)
h1(t)− h2(t)Et

C

)
dt+ σdWt

= −(A1 −A2Et − ν h1(t)−h2(t)Et
C )dt+ ZtdWt

ȲT = PT − (B − ν)ET

(80)
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Mean Field Game Theory for Gas Storage Valuation - BP Con�dential

Therefore : 
h′2 −

h2
2

C
+A2 = 0

h′1 − h2h1

C +A1 + f0 = 0

h2(T ) = B − ν, h1(T ) = 0

(81)

Setting ρ =
√

A2

C and c2 = B−ν−ρC
B−ν+ρC exp(−2ρT ) we have :

h2(t) = ρC
1 + c2 exp(2ρt)

1− c2 exp(2ρt)
(82)

and

h1(t) =

∫ T

t

exp

(
−
∫ s

t

h2(u)

C
du

)
(A1 + f0(s))ds

To sum up : 

α(t, s) =
h1(t)− h2(t)s

C
µ(t) = h1(t)−h2(t)E(t)

C

S(t) = exp
(
−
∫ t

0
h2(u)
C du

)(
S0 +

∫ t
0

exp
(

+
∫ u

0
h2(w)
C dw

)
h1(u)
C du

)
E(t) = exp

(
−
∫ t

0
h2(u)
C du

)(
E0 +

∫ t
0

exp
(∫ u

0
h2(w)
C dw

)
h1(u)
C du

)
Pt = P0 +

∫ t
0
f0(u)du+ νE(t) + σWt

(83)

The expected gain for an agent at time t is

Vt = Et,s,p

[∫ T

t

[
−α(u, Su)Pu −

C

2
α2(t, Su) +A1Su −

A2

2
S2
u

]
du+ PTST −

B

2
S2
T

]

Thus

Vt = v(t, St, Pt) = h0(t) + δ(t) + (h1(t) + Pt + ∆(t))St −
h2(t)

2
S2
t

With h0(t) =
∫ T
t

h2
1(s)
2C ds, ∆(t) =

∫ T
t

exp
(∫ s

t
h2(u)
C du

)
νE′(s)ds and δ(t) =

∫ T
t

h1(s)∆(s)
C ds. The demonstration is

that both expressions of Vt are equal in T and have the same di�erential at any time.

We denote by F (t) = E(S(t)2), we have

F (t) = exp

(
−
∫ t

0

h2(u)

C
du

)(
F0 + 2E0

∫ t

0

exp

(∫ u

0

h2(w)

C
dw

)
h1(u)

C
du+

(∫ t

0

exp

(∫ u

0

h2(w)

C
dw

)
h1(u)

C
du

)2
)

We average expected gain is

E[V0] = h0(0) + δ(0) + (h1(0) + P0 + ∆(0))E0 −
h2(t)

2
F0

Remark 12

This situation also correspond a cartel of agents agreeing to follow a strategy that in the end earn them more
than if there were no cartel and the state of the market were the game equilibrium. However the cartel is an
unstable state in the sense that each agents has interest in betraying, the more agents are betraying the more
the gains of all the players decreases.
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9 PRICE OF ANARCHY 67

9.2 Comparison of expected gains

We recall the expected payo� of a player in a MFG from paragraph 5.1.2

vMFG(t, St, Pt) = hMFG
0 (t) + (PMFG

t + hMFG
1 (t))St − hMFG

2 (t)
S2
t

2

With

PMFG
t = P0 +

∫ t

0

f0(s)ds+ νEMFG(t) + σWt

hMFG
2 (t) = ρC

1 + c2 exp(2ρt)

1− c2 exp(2ρt)

ρ =
√

A2

C , c2 = B−ρC
B+ρC exp(−2ρT )

EMFG and hMFG
1 solutions of the system :

C(EMFG)′′ + ν(EMFG)′ −A2E
MFG = −A1 − f0

h1 = C(EMFG)′ + EMFGhMFG
2

EMFG(0) = E0, C(EMFG)′(T ) +BEMFG(T ) = 0

(84)

and

hMFG
0 (t) =

∫ T

t

(hMFG
1 (s))2

2C
ds

The average expected payo� of the players is

E[VMFG
0 ] = hMFG

0 (0) + (P0 + hMFG
1 (0))E0 − hMFG

2 (0)
F0

2

Comparing the two average payo� for MFG and MFC is quite tricky analytically. By de�nition, the MFC
strategy is optimal for maximizing the average payo� so we know that the average payo� in MFG is lower.

For the numerical example, we take the seasonality of the form :

f0(t) = Kcos(2πt+ φ)

We chose the following set of parameters, (with the Bachelier model, the results do not depend on the volatility so
one can take whichever value they want for σ) :

T = 1, A1 = 5, A2 = 5, B = 10, C = 1

P0 = 100, E0 = 0, F0 = 0, K = 5, φ =
3π

4
, ν = 6
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Mean Field Game Theory for Gas Storage Valuation - BP Con�dential

Figure 9.1: Expected payo�s in MFG and MFTC

This �rst �gure show the expected payo� (or present value) of a player starting with a null inventory, in the
MFG case and in the cartel case compared to the case where there is no market impact and the player use the
optimal strategy. We can see how the Mean Field Game equilibrium signi�cantly performs worse than the cartel
situation. This shows also that the presence of a market impact allows the players to gain more than in the classical
case granting that they coordinate.

Figure 9.2: Strategy MFTC vs MFG vs classic

Figure 9.3: Expected payo� by strategy and environment

This last �gure shows the expected payo� of players starting with a null inventory with di�erent strategies in
di�erent environments. If there is actually no market impact, a player using the MFG strategy (last column) will
always perform worse than a player with the optimal strategy that we call classic strategy (second column). In
the case that there is e�ectively a market impact, the expected payo� of a strategy depends on the strategy of the
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9 PRICE OF ANARCHY 69

others. We've highlighted some particular cases. If everybody uses the classic strategy (column 4), they all earn
more than with the same strategy in classic situation, but not as much as if they all coordinate. If the majority of
the players uses the classical strategy, a player using the MFG strategy will perform better (column 7) but not as
much as the optimal strategy for this situation (column 6). If the game is at its equilibrium state, a player that
keeps using the classic strategy (column 5) will signi�cantly perform worse than the others. The optimal strategy
in this situation being the MFG strategy itself.

9.3 Expected gains and learning

In what follows we simulate an evolving environment like in the learning setting with the learning algorithm
simply being µn+1,estimate = µn,measured, and the mean-�eld does not trade on round 0. We track the present value
of di�erent strategies in this setting, one of the player always having the optimal strategy for the round, one that
use the MFG strategy a each round, and one that have the same strategy than the mean �eld.

Figure 9.4: Expected payo� by strategy and environment

By de�nition the optimal strategy performs better than the others at every round. It is interesting to see how
the payo� of the MFG strategy, which is the only of the three strategies to remain the same at every round, performs
always between the two others. Sadly, we could not �nd ant heuristic explanation for this feature. Naturally when
the the number of rounds goes to in�nity, the optimal strategy and the mean �eld strategy converges to the MFG
strategy, and the present values of the three strategies converge to the present value of the MFG strategy in a MFG
equilibrium. We know that the mean �eld would converge to the MFG equilibrium from the results on learning,
and we know that the mean �eld strategy for a round is actually the optimal strategy for the previous round. And
of course the optimal strategy in the MFG equilibrium is the MFG strategy itself. This is why the three sequences
converge toward this same point.
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Mean Field Game Theory for Gas Storage Valuation - BP Con�dential

10 Extended models

10.1 Multiple markets

10.1.1 The model

We assume that the agents have access to multiple gas markets with di�erent prices. They therefore have an
array of injection rates, corresponding to the rates of each markets. The dynamic of the inventory is therefore :

dSt = Σnk=1αt,kdt = αt
>
1ndt

The reward function is :

J(α, µ) = E

[∫ T

0

[
−Σnk=1αt,kPt,k −

Σnk=1Ckα
2
t,k + C0(Σnk=1αt,k)2

2
+A1St −

A2

2
S2
t

]
dt+

Σnk=1PT,k/Ck
Σnk=11/Ck

ST −
B

2
S2
T

]

= E

[∫ T

0

[
−αt>Pt −

αt
>(diag(C) + C01n,n)αt

2
+A1St −

A2

2
S2
t

]
dt+

Σnk=1PT,k/Ck
Σnk=11/Ck

ST −
B

2
S2
T

]
(85)

10.1.2 Derivation of the equations

Using Pontrayagin's maximum principle we get that

dβJ(α, µ) = E

[∫ T

0

[
−βt>Pt − βt>(diag(C) + C01n,n)αt +A1S

β
t −A2StS

β
t

]
dt+

Σnk=1PT,k/Ck
Σnk=11/Ck

SβT −BSTS
β
T

]

where Sβt =
∫ t

0
βs
>
1nds

Let Yt be the solution of the following BSDE :{
dYt = −(A1 −A2St)dt+ ZtdWt

YT =
Σnk=1PT,k/Ck

Σnk=11/Ck
−BST

(86)

Then, using Ito's lemma on
Σnk=1PT,k/Ck

Σnk=11/Ck
SβT −BSTS

β
T , we have :

dβJ(α, µ) = E

[∫ T

0

βt
> [−Pt − (diag(C) + C01n,n)αt + Yt1n] dt

]

α being the optimal control means

∀β, E

[∫ T

0

βt
> [−Pt − (diag(C) + C01n,n)αt + Yt1n] dt

]
= 0

Therefore :

αt = (diag(C) + C01n,n)−1(Yt1n − Pt)

Assuming Yt =
Σnk=1Pt,k/Ck

Σnk=11/Ck
− h2(t)St +Ht , we get :
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10 EXTENDED MODELS 71

dYt = dHt +
Σnk=1

dPk,t
Ck

Σnk=1
1
Ck

+

(
−h′2(t)St − h2(t)1n

>(diag(C) + C01n,n)−1

((
Σnk=1Pt,k/Ck

Σnk=11/Ck
− h2(t)St +Ht

)
1n − Pt

))
dt

= −(A1 −A2St)dt+ ZtdWt

and µt = (diag(C) + C01n,n)−1((
Σnk=1Pt,k/Ck

Σnk=11/Ck
− h2(t)Et +Ht)1n − Pt)

(87)

Therefore, denoting C̃ =
(
1n
>(diag(C) + C01n,n)−1

1n

)−1
, we have :

h′2(t)− h2
2(t)

C̃
+A2 = 0

h2(T ) = B

dHt =

(
−A1 −

Σnk=1
bk(t,Pt,µt)

Ck

Σnk=1
1
Ck

+
h2(t)(Ht+

Σnk=1Pt,k/Ck
Σn
k=1

1/Ck
)

C̃
− h2(t)1n

>(diag(C) + C01n,n)−1Pt

)
dt+ ZtdWt

HT = 0
(88)

As usual, writing Ht = h1(t, Pt, Et) , gives the following PDE :


∂th1 + b>

(
∇ph1 +

diag(C)−1
1n

1n
>diag(C)−11n

)
+

1

2
Tr
(
σσ>Dpph1

)
− h2

h1 + p>diag(C)−1
1n

1n
>diag(C)−11n

C̃
− p>(diag(C) + C01n,n)−1

1n


+∂eh11n

>µ(t, p, e) +A1 = 0

h1(T ) = 0
(89)

Assuming C0 = 0 gives :

 ∂th1 + b (·, µ(·))>
(
∇ph1 +

vect(C−1)

1n
>vect(C−1)

)
+

1

2
Tr
(
σσ>Dpph1

)
− h2h1

C̃
+ ∂eh11n

>µ(t, p, e) +A1 = 0

h1(T ) = 0
(90)

10.1.3 Symmetric Bachelier case

To have an explicit solution, let's assume a Bachelier price model like this :

dPt =

f0(t) +

 ν1In︸︷︷︸
endogenous market impact

+
ν2

n
1n,n︸ ︷︷ ︸

cross market impact

µt

 dt+ σdWt

We also need to assume that the market access cost is symmetric : ∀k,Ck = nC ⇒ C̃ = C . The equation (90)
becomes :

 ∂th1 +
(
f0 +

(
ν1In +

ν2

n
1n,n

)
µt

)>(
∇ph1 +

1n

n

)
+

1

2
Tr
(
σσ>Dpph1

)
− h2h1

C
+ ∂eh11n

>µ+A1 = 0

h1(T ) = 0
(91)
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Mean Field Game Theory for Gas Storage Valuation - BP Con�dential

As 1n
>µ(t, p, e) = 1n

>

(
1n
>
n p−h2(t)e+h1(t,p,e)

)
1n−p

nC = h1(t,p,e)−h2(t)e
C . If we assume that h1 does not depend on the

price. Then the dynamic of E is deterministic and we have the following system :
h′1(t) +

(
f0(t) +

(
ν1µ(t) +

ν2

n
(1n
>µ(t))1n

))> 1n
n
− h2(t)h1(t)

C
+A1 = 0

E′(t) = 1n
>µ(t)

h1(T ) = 0, E(0) = E0

(92)

That is 
h1(t)′ + (ν1 + ν2)

h1(t)− h2(t)E(t)

nC
− h2(t)h1(t)

C
+A1 + f0(t)

> 1n

n
= 0

E′(t) = h1(t)−h2(t)E(t)
C

h1(T ) = 0, E(0) = E0

(93)

Denoting x̄ =
(
x> 1n

n

)
, we recognize the same system than with one market :

CE′′ +
ν1 + ν2

n
E′ −A2E = −A1 − f̄0

h1 = CE′ + Eh2

E(0) = E0, CE
′(T ) +BE(T ) = 0

(94)

The control for the kth market writes :

αk(t, s, p) =
h(t)− h2(t)s

nC
+
p̄− pk
nC

= ᾱ(t, s) +
p̄− pk
nC

µk(t, p) =
h(t)− h2(t)E(t)

nC
+
p̄− pk
nC

= µ̄(t) +
p̄− pk
nC

So in this multi-market Bachelier framework, there is an average strategy exploiting the average price season-
ality, added with a price spread strategy, buying more/selling less on markets where the price is lower and vice versa.

Also the dynamic of the average price is :

dP̄t =
(
f̄0 + (ν1 + ν2)µ̄t)

)
dt+ σ̄dWt

Thus the spread between the kth price and the average price is mean reverting in an Ornstein-Uhlenbeck way :

d(Pk,t − P̄t) =
(

(f0,k − f̄0)− ν1

nC
(Pk,t − P̄t)

)
dt+ (σk − σ̄)dWt

Furthermore we have  h′1(t) + f̄0(t) + (ν1 + ν2)µ̄(t)− h2(t)h1(t)

C
+A1 = 0

µ̄(t) = E′(t)
n h1(T ) = 0

(95)

So the learning scheme is exactly the same as in the case there is only one market, using the the average µ̄.

10.1.4 Numerical results

For the numerical example we take two market driven by two Brownian motion. For both market we take the
same seasonality of the form :

f0(t) = Kcos(2πt+ φ)

We chose the following set of parameters :
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10 EXTENDED MODELS 73

T = 1, A1 = 5, A2 = 5, B = 10, C = 0.5, P0 = 100, E0 = 0, K = 5, φ =
3π

4
, ν = 6, κ = 1

The volatility of the �rst market is σ1 = 8, of the second market σ2 = 4 and the correlation is ρ = 0.5

Figure 10.1: E(t)

Figure 10.2: Prices with and without market impact

On this �gure we have plotted the prices' trajectories of the two markets compared to what they would have
been without market impact (so with the same trajectory of Brownian motion).
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Mean Field Game Theory for Gas Storage Valuation - BP Con�dential

Figure 10.3: Price spread with and without market impact

We can see on this �gure that price spread is mean reverting when there is market impact like we've shown in
the above proof.

10.2 Inhomogeneous reward functions

Cardaliaguet and Lehalle [13] introduced this extended model for their optimal liquidation problem. We have
adapted it to optimal use of a storage.

10.2.1 The model and derivation the equations

As we talked in the sections about Mean Field Games about the possibility to have di�erent reward functions
representing di�erent storage capacities and transaction cost among the players. We will keep our linear quadratic
framework to have explicit computations. We have now A1, A2, B and C depending on the type of agent a.

The density of player mt now also includes the type of agents : mt(ds, da). We will assume for the sake
of simplicity that preferences of the players does not evolve over time. The distribution of type of agents only
depending on the initial condition m̄0(da) =

∫
s
m0(ds, da) Thus we can disintegrate mt in :

mt(ds, da) = ma
t (ds)m̄0(da)

We denote Eat =
∫
s
sma

t (ds), the mean of the inventories of the players of type a. And in general the stochastic
process of application Et : a→ Eat and the state variable e : a→ e(a).

Using the previous sections we have as usual :

αat =
Ha
t − ha2s
Ca

µat =
Ha
t − ha2Eat
Ca

µt =

∫
a

µat m̄0(da)



dPt = b(t, Pt, µt)dt+ σ(t, Pt)dWt

dHa
t = −

(
b(t, Pt, µt) +

Hat h
a
2 (t)
C

a
−Aa1

)
dt+ Zat dWt

dEat = µat dt

ha2
′ − ha2

Ca +Aa2 = 0

ha2(T ) = Ba, Ha
T = 0

(96)
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10 EXTENDED MODELS 75

We assume that Ha
t = ha(t, Pt, Et), therefore :{

∂th
a + (1 + ∂ph

a)b(t, p, µ(t, p, e)) +
1

2
σ2∂pph

a + ∂eh
a[a→ µat ]− ha2(t)ha(t, p, e)

Ca
+Aa1 = 0

ha(T ) = 0
(97)

10.2.2 Bachelier case

In the Bachelier case, assuming that h do not depend on the price, the dynamic of Et becomes deterministic
therefore the system rewrites :

(ha)′(t) + f0(t) + ν

∫
ã

hã(t)− hã2(t)Eã(t)

C ã
m̄0(dã)− ha2(t)ha(t)

Ca
+Aa1 = 0

(Ea)′(t) =
ha(t)−ha2 (t)Ea(t)

C

ha(T ) = 0, Ea(0) = Ea0

(98)

In the most general case where there is a continuum of preferences, the system is an in�nite number of coupled
parametric equations. In the case where the set of preferences is �nite, the system is �nite. Let's take the example
where there are two kinds of players, evenly distributed :

m̄0(da) =
δx + δy

2
(da)

Then the system is :



(hx)′(t) + f0(t) + ν

(
hx(t)− hx2(t)Ex(t) + hy(t)

2Cx
+
hy2(t)Ey(t)

2Cy

)
− hx2(t)hx(t)

Cx
+Ax1 = 0

(hy)′(t) + f0(t) + ν
(
hx(t)−hx2 (t)Ex(t)+hy(t)

2Cx +
hy2(t)Ey(t)

2Cy

)
− hy2(t)hy(t)

Cy +Ay1 = 0

(Ex)′(t) =
hx(t)−hx2 (t)Ex(t)

Cx

(Ey)′(t) =
hy(t)−hy2(t)Ey(t)

Cx

hx(t) = hy(T ) = 0, Ex(0) = Ex0 , E
y(0) = Ey0

(99)

10.2.3 Numerical results

For the numerical example we took, Ax1 = 5, Ax2 = 5, Ay1 = 10 , Ay2 = 5, Bx = By = 10 and Cx = Cy = 1. The
values are taken to represent that players of type x have greater storage capacity than players of type y. The av-
erage initial inventory for each group is Ex0 = Ey0 = 0. For the price model we took K = 30, φ = 3π

4 , ν = 6, p0 = 100

Figure 10.4: Average inventory for each group of players
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Mean Field Game Theory for Gas Storage Valuation - BP Con�dential

We plotted the solutions for Ex and Ey in blue and yellow, and the resulting E = Ex+Ey

2 in green.

Figure 10.5: Comparison with the cases where the all the players are identical

We also plotted the solutions for the cases where the players think all other player have the same type as them,
in red and green. We can see how the high capacities buy even more than when they are alone and the opposite for
the low capacities. It is di�cult to understand really why. We can assume that the bigger µ is the less the players
buy. Then since µ is smaller in the mixed player case for the high capacities, they buy more, and vice versa for the
small capacities.

10.2.4 Learning

Figure 10.6: Learning trajectories
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10 EXTENDED MODELS 77

Figure 10.7: Learning results vs system solutions

Ex learned Trajectory of players of type x computed according to their �nal estimate of µ
Ey learned Trajectory of players of type y computed according to their �nal estimate of µ

E learned by x Players of type x's �nal estimate of E =
∫ ·

0
µ(t)dt

E learned by y Players of type y's �nal estimate of E =
∫ ·

0
µ(t)dt

true Ex Ex as solution of the system of equations
true Ey Ey as solution of the system of equations

true E E = Ex+Ey

2

For the learning, each players of the same type share their learning method, that is that at any game they all
have the same estimate of what will be µ(t) and therefore the same strategy. For the example, both groups have the
same prior but di�erent learning rates : αx = 0.3 and αy = 0.7 . We can see that the strategy eventually converges
toward the solution of the equation, as the curves coincides.

10.3 Inhomogeneous price models beliefs

The idea for this extended model comes from the inhomogeneous reward functions model. Like it is unlikely
that in reality all agent are identical, it is unlikely that they use the same pricing models with same calibration.

10.3.1 Model and derivation of the equation

Let's imagine now instead that the players do not use the same price model. Each price model resulting in a
strategy.

Remark 13

The players knows of the price model used by other players and are aware that other players are in the same
position. Also there is no need for a 'true price model', the players' control is a function of the time , price, and
distribution of inventories and beliefs .

The density of player mt now also includes the type of agents : mt(ds, da). We will assume for the sake of
simplicity that beliefs of the players does not evolve over time. The distribution of type of agents only depending
on the initial condition m̄0(da) =

∫
s
m0(ds, da) Thus we can disintegrate mt in :

mt(ds, da) = ma
t (ds)m̄0(da)

We denote Eat =
∫
s
sma

t (ds), the average inventory of the players of type a. And in general the stochastic
process of application Et : a→ Eat and the state variable e : a→ e(a).

Using the previous sections we have as usual :
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Mean Field Game Theory for Gas Storage Valuation - BP Con�dential

αat =
Ha
t − h2s

C

µat =
Ha
t − h2E

a
t

C

µt =

∫
a

µat m̄0(da)

In this framework we still have :

{
h2
′ − h2

C
+A2 = 0

h2(T ) = B
(100)


dHa

t = −
(
ba(t, Pt, µt) +

Ha
t h2(t)

C
−A1

)
dt+ Zat dWt

dEat = µat dt

Ha
T = 0

(101)

We assume that Ha
t = ha(t, Pt, Et), therefore :

{
∂th

a + (1 + ∂ph
a)ba(t, p, µ(t, p, e)) +

1

2
(σa(t, p))2∂pph

a + ∂eh
a[a→ µat ]− ha2(t)ha(t, p, e)

C
+A1 = 0

ha(T ) = 0
(102)

10.3.2 Bachelier case

In order to have explicit computations, we assume that all the beliefs are Bachelier price models with di�erent
parameters.

dPt = (fa0 (t) + νaµt) dt+ σadWt

Assuming that h do not depend on the price make that the process Et is deterministic.


(ha)′(t) + fa0 (t) + νa

∫
ã

hã(t)− h2(t)Eã(t)

C
m̄0(dã)− h2(t)ha(t)

C
+A1 = 0

(Ea)′(t) = ha(t)−h2(t)Ea(t)
C

ha(T ) = 0, Ea(0) = Ea0

(103)

Denoting h =
∫
a
ham̄0(da) , E =

∫
a
Eam̄0(da), ν =

∫
a
νam̄0(da) and f0 =

∫
a
fa0 m̄0(da) we have :

(ha)′(t) + fa0 (t) + νa
h(t)− h2(t)E(t)

C
− h2(t)ha(t)

C
+A1 = 0

h′(t) + f0(t) + ν h(t)−h2(t)E(t)
C − h2(t)h(t)

C +A1 = 0

(Ea)′ = ha(t)−h2(t)Ea(t)
C

E′(t) = h(t)−h2(t)E(t)
C

ha(T ) = h(T ) = 0, Ea(0) = Ea0 , E(0) = E0

(104)

Thus we have the same system than usual for h and E. Then ha(t) =
∫ T
t

exp
(
−
∫ s
t
h2(u)
C du

)(
A1 + fa0 (s) + νa h(t)−h2(t)E(t)

C

)
ds

and Ea(t) = exp
(
−
∫ t

0
h2(s)
C ds

)(
Ea0 +

∫ t
0

exp
(

+
∫ s

0
h2(u)
C du

)
ha(s)
C ds

)
.

IST Quantitative Analytics 78 of 86 September 24, 2019



IS
T
_
Q
u
a
n
ti
ta
ti
v
e_

A
n
al
y
ti
cs
_
In
te
ll
ec
tu
a
l_
P
ro
p
er
ty

10 EXTENDED MODELS 79

10.3.3 Numerical results

For the numerical example we take two kinds of players evenly distributed. We take Kx = Ky = 30, φx = φy =
3π
4 , νx = 8, νy = 4 and p0 = 100.
The values are taken to represent that players of type y are more optimistic on the market market impact (they
think there is less) than the players of type x . The average initial inventory for each group is Ex0 = Ey0 = 0. For
the storage model we took A1 = 5, A2 = 5, B = 10 and C = 1.

Figure 10.8: Average inventory for each group of players

We notice how pessimistic players buy and sell earlier than the optimists.

Figure 10.9: Comparison with the cases where the all the players are identical

On this �gure we plotted what would have been the strategies if each group of players represented 100% of the
players, allowing us to compare these strategy with the case where there is 50% of each type. We notice that the
optimists trade more slowly than when they are alone, and the opposite for the pessimists. Like the inhomogeneous
rewards model, it is di�cult to interpret this di�erence.
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Mean Field Game Theory for Gas Storage Valuation - BP Con�dential

10.3.4 Learning

Figure 10.10: Learning trajectories

Figure 10.11: Learning results vs system solutions

Ex learned Trajectory of players of type x computed according to their �nal estimate of µ
Ey learned Trajectory of players of type y computed according to their �nal estimate of µ

E learned by x Players of type x's �nal estimate of E =
∫ ·

0
µ(t)dt

E learned by y Players of type y's �nal estimate of E =
∫ ·

0
µ(t)dt

true Ex Ex as solution of the system of equations
true Ey Ey as solution of the system of equations

true E E = Ex+Ey

2

In this learning model, we do not make the player adapt their price model to the actual price behaviour they
see at each round, they only adapt their estimate of µ(t) for the next round. If we would do a learning procedure
on the price model itself, the model of each player would converge to the 'true price model' and there would be no
more inhomogeneity in the models. We �rst show the learning strategies for a learning rate of , with di�erent prior
for the two groups. On the second graph we can see that that the �nal strategy of each group is the same than the
ones obtained by solving the equations.

10.4 General comments

It is possible to combine all these extensions at the same time. Using the learning method is a very handy and
intuitive way to solve the system when there are too many di�erent coupled equations. It allows to replicate the
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10 EXTENDED MODELS 81

real world where agents have di�erent storages, beliefs and learning procedures.

There is also the possibility to have beliefs on the initial distribution of players. Distribution of initial inven-
tories but also storage capacities, price model beliefs, and beliefs on the others. The di�erence with before is that
each player has a di�erent belief on what will be the average control µ(t, Pt, Et). Then we already seen that the
strategy of a generic player is the optimal strategy given by a classic Bellman optimization principle. The belief
on the others' characteristics gives beliefs on what the others think is µ(t, p, e), from these beliefs we can deduce a
µ. Therefore having a belief on the others can be resumed to having a belief on µ, from which you compute your
optimal strategy belief associated with your price model.

This remark is to open the discussion concerning the hard constraints case. In the end we compute our control
from the µ and our price model, the µ being solution of a PDE depending on the storage capacity ( or what are
the rewards function ) and price model. But the storage capacity and price model of the other players can only be
estimated a priori. The uncertainty on the others induce an uncertainty on µ. So it can be more suitable to estimate
directly µ rather than solving numerically an equation which add uncertainty on the already existing uncertainty
from the belief on the others storage capacity and price model. The di�culty to read mt or µt at given time, since
it require to have access to most storages' inventories.
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11 Conclusion

After presenting the storage optimization problem in the classical case, we made an introduction to Mean Field
theory. We then proposed some extensions of the classical storage optimization by using price models that take into
account the �ow of trades on the market, this resulted in Mean Field Games problems. We used a linear-quadratic
storage constraints assumption for the sake of pedagogy as it allows to resume the distribution of inventory to its
mean. The Bachelier price model is a simple model from which explicit solutions can be given, allowing to easily
deduce stylizing facts of more complex models. For more complex model like Black-Scholes or Clewlow-Strickland,
the problem resumes to solving a parabolic PDE, �nite di�erences can be used. Learning is a promising way to
solve the problems as the MFG problems are �xed point problems, but we could only use it in the Bachelier case.
However it is easily adaptable to the extensions of the Bachelier cases with multiple markets and multiple storage
capacities and beliefs among the players. These extended models in general can be used to model lots of di�erent
kinds of market agents, not only storage managers. The calibration we tried to do unfortunately showed that
models of market impacts are not relevant for this scale of time but we are con�dent that the results we showed
are still useful and that our model could be adapted for other problems, for example intraday trading.
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12 APPENDIX 83

12 Appendix

12.1 Heuristic derivation of the Hamilton-Jacobi-Bellman equation

Let's take a random process X :

dXt = b(t,Xt, αt)dt+ σ(t,Xt, αt)dWt

We have the stochastic optimization problem : J(t, x, α) = Et,x

[∫ T

t

f(s,Xs, αs)ds+ g(XT )

]
v(t, x) = supα∈A J(t, x, α)

(105)

The dynamic programming principle gives :

v(t, x) = sup
α∈A

Et,x

[
v(t+ h,Xt+h) +

∫ t+h

t

f(s,Xs, αs)ds

]

Therefore, by Ito's lemma :

0 = sup
α∈A

Et,x

[∫ t+h

t

(∂tv +Dxv · b+
1

2
Tr(Dxxv(σσ>)) + f)(s,Xs, αs)ds

]

Taking h to zero gives :

∂tv(t, x) + sup
α∈A

Dxv(t, x) · b(t, x, α) +
1

2
Tr(Dxxv(t, x)(σσ>)(t, x, α)) + f(s, x, α) = 0

Also, v(T, x) = ET,x [g(XT )] = g(x)

Thus we have the HJB system :{
∂tv(t, x) +H(t, x,Dxv(t, x), Dxxv(t, x)) = 0

v(T, x) = g(x)
(106)

With H the Hamiltonian : H(t, x, p, γ) = supα∈A p · b(t, x, α) + 1
2Tr(γ(σσ>)(t, x, α)) + f(s, x, α)

12.2 Heuristic derivation of the Fokker-Planck equation

Let's take a random process X :
dXt = b(t,Xt)dt+ σ(t,Xt)dWt

To show the Fokker-Planck equation, we compute the derivation of an expectation by two di�erent ways :

E[f(Xt)] =

∫
f(x)mt(dx)

=⇒ ∂tE[f(Xt)] =

∫
f(x)∂tmt(dx)

By Ito's lemma, we have :

E[Dxf(Xt) · b(t,Xt) +
1

2
Tr(Dxxf(XT )(σσ>)(t,Xt)] =

∫
f(x)∂tmt(dx)
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=⇒
∫

(Dxf(x) · b(t, x) +
1

2
Tr(Dxxf(x)(σσ>)(t, x))mt(dx) =

∫
f(x)∂tmt(dx)

Then by integration by parts :∫
f(x)(−div(b(t, x)mt(x)) +

1

2

∑
i,j

∂xi,xj (mt(x)(σσ>)i,j(t, x)))dx =

∫
f(x)∂tmt(x)dx

It is true for any f , therefore we get the Fokker-Planck equation :

∂tmt(x) + div(b(t, x)mt(x))− 1

2

∑
i,j

∂xi,xj (mt(x)(σσ>)i,j(t, x)) = 0
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